Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(2): 592-603, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38058198

RESUMEN

Luminescent colloidal silicon quantum dots (SiQDs) are sustainable alternatives to metal-based QDs for various optical applications. While the materials are reliant on their photoluminescence efficiency, the relationship between the structure and photostability of SiQDs is yet to be well studied. An amorphous silicon (a-Si) shell was recently discovered in SiQDs prepared by thermally-processed silicon oxides. As a-Si is known as a source of defects upon UV irradiation, the disordered shell could potentially have an adverse effect on the optical properties of nanoparticles. Herein, the photostability of ∼5 nm diameter SiQDs with an amorphous shell was compared with that of over-etched SiQDs of equivalent dimensions that bore an a-Si shell of negligible thickness. An UV-induced degradation study was conducted by subjecting toluene solutions of SiQDs to 365 nm light-emitting diodes (LEDs) under an inert atmosphere for predetermined times up to 72 hours. The structure, composition, and optical responses of the exposed SiQDs were evaluated.

2.
ACS Omega ; 8(46): 43610-43616, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38027342

RESUMEN

Graphene quantum dots (GQDs) derived from natural asphaltene byproducts can produce controlled hydrophobic or hydrophilic interfaces on glass, fabrics, and aerogels. A set of facile solvent extraction methods were used to isolate and chemically prepare materials with different surface functionalities from a commercially derived asphaltene precursor. The organic-soluble fraction was used to create hydrophobic and water-repellent surfaces on glass and cotton fabrics. The GQD solutions could also penetrate the pores of a silica aerogel, rendering it hydrophobic. Alternatively, by extracting the more polar fraction of the GQDs and oxidizing their surfaces, we also demonstrate strongly hydrophilic coatings. This work shows that naturally abundant GQD-containing materials can produce interfaces with the desired wettability properties through a straightforward tuning of the solvent extraction procedure. Owing to their natural abundance, low toxicity, and strong fluorescence, asphaltene-derived GQDs could thus be applied, in bulk, toward a wide range of tunable surface coatings. This approach, moreover, uses an important large-scale hydrocarbon waste material, thereby offering a sustainable alternative to the disposal of asphaltene wastes.

3.
Nanoscale Adv ; 4(19): 4080-4093, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36285213

RESUMEN

Graphene quantum dots (GQDs) with tunable photoluminescence (PL) and hydrophobicity were synthesized from an abundant natural carbon source containing nitrogen, sulfur, and oxygen heteroatoms. Asphaltene and its oxidized and reduced derivatives were used as precursors to produce GQDs in organic solvents (i.e., methanol, toluene, and chloroform) using a facile ultrasonication technique. Asphaltene surface chemistry was tuned by sequential oxidation and reduction to investigate the surface effects on GQD properties. Spectroscopic characterizations confirmed the presence of N, S, and O heteroatoms and different electron-donating and electron-withdrawing groups. Microscopic characterizations revealed that these crystalline carbon nanomaterials have mono-layered or multi-layered structures with lateral sizes in the range of ∼5-15 nm. The asphaltene-derived GQDs exhibit tunable PL with emission colors ranging from blue to orange, depending on the carbon precursor and the organic solvent. Solvent exchange studies also revealed that asphaltene and its derivatives contain hydrophilic and hydrophobic fractions, resulting in varied hydrophobicity of the synthesized GQDs. Adding to the appeal of the present work, PL quenching of GQD-silica hybrid materials upon exposure to nitro-aromatics confirms that these GQDs can be incorporated to different host materials for advanced sensing or optoelectronic applications.

4.
J Vis Exp ; (186)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993754

RESUMEN

Time-resolved photoluminescence (TRPL) is a key technique for understanding the photophysics of semiconductor nanocrystals and light-emitting materials in general. This work is a primer for setting up and conducting TRPL on nanocrystals and related materials using single-photon-counting (SPC) systems. Basic sources of error in the measurement can be avoided by consideration of the experimental setup and calibration. The detector properties, count rate, the spectral response, reflections in optical setups, and the specific instrumentation settings for single photon counting will be discussed. Attention to these details helps ensure reproducibility and is necessary for obtaining the best possible data from an SPC system. The main aim of the protocol is to help a student of TRPL understand the experimental setup and the key hardware parameters one must generally comprehend in order to gain useful TRPL data in many common single-photon-counting setups. The secondary purpose is to serve as a condensed primer for the student of experimental time-resolved luminescence spectroscopy.

5.
Nano Lett ; 22(1): 517-523, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962401

RESUMEN

We show a double-functional fluorescence sensing paradigm that can retrieve nanometric pH information on biological structures. We use this method to measure the extent of protonic condensation around microtubules, which are protein polymers that play many roles crucial to cell function. While microtubules are believed to have a profound impact on the local cytoplasmic pH, this has been hard to show experimentally due to the limitations of conventional sensing techniques. We show that subtle changes in the local electrochemical surroundings cause a double-functional sensor to transform its spectrum, thus allowing a direct measurement of the protonic concentration at the microtubule surface. Microtubules concentrate protons by as much as one unit on the pH scale, indicating a charge storage role within the cell via the localized ionic condensation. These results confirm the bioelectrical significance of microtubules and reveal a sensing concept that can deliver localized biochemical information on intracellular structures.


Asunto(s)
Microtúbulos , Protones , Biofisica , Citoplasma/fisiología , Concentración de Iones de Hidrógeno , Microtúbulos/metabolismo
6.
ACS Sens ; 7(1): 245-252, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34936335

RESUMEN

We report on a fluorescent-droplet-based acid-sensing scheme that allows limits of detection below 100 pM for weak acids. The concept is based on a strong partitioning of acid from an aqueous phase into octanol droplets. Using salicylic acid as a demonstration, we show that at a high concentration, the acid partitions into the organic phase by a factor of 260, which is approximately consistent with literature values. However, at lower concentrations, we obtain a partition coefficient as high as 106, which is partly responsible for the excellent sensing performance. The enhanced equilibrium partitioning is likely due to the interaction of the dissociated acid phase with the sensor dye employed for this work. The effect of droplet size was determined, after which we derived a simple model to predict the time dependence of the color change as a function of droplet size. This work shows that color-change fluorescent-droplet-based detection is a promising avenue that can lead to exceptional sensing performance from an aqueous analyte.


Asunto(s)
Colorantes , Agua , Octanoles
7.
ACS Appl Mater Interfaces ; 13(23): 27149-27158, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-33983697

RESUMEN

Luminescent silicon nanoparticles have been widely recognized as an alternative for metal-based quantum dots (QDs) for optoelectronics partly because of the high abundance and biocompatibility of silicon. To date, the broad photoluminescence line width (often >100 nm) of silicon QDs has been a hurdle to achieving competitive spectral purity and incorporating them into light-emitting devices. Herein we report fabrication and testing of straightforward configuration of Fabry-Pérot resonators that incorporates a thin layer of SiQD-polymer hybrid/blend between two reflective silver mirrors; remarkably these devices exhibit up-to-14-fold narrowing of SiQD emission and achieve a spectral bandwidth as narrow as ca. 9 nm. Our polymer-based, SiQD-containing Fabry-Pérot resonators also provide convenient spectral tunability, can be prepared using a variety of polymer hosts and substrates, and enable rigid as well as flexible devices.

8.
J Am Chem Soc ; 142(24): 10780-10793, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32426971

RESUMEN

Efficient white-light-emitting single-material sources are ideal for sustainable lighting applications. Though layered hybrid lead-halide perovskite materials have demonstrated attractive broad-band white-light emission properties, they pose a serious long-term environmental and health risk as they contain lead (Pb2+) and are readily soluble in water. Recently, lead-free halide double perovskite (HDP) materials with a generic formula A(I)2B'(III)B″(I)X6 (where A and B are cations and X is a halide ion) have demonstrated white-light emission with improved photoluminescence quantum yields (PLQYs). Here, we present a series of Bi3+/In3+ mixed-cationic Cs2Bi1-xInxAgCl6 HDP solid solutions that span the indirect to direct band-gap modification which exhibit tailorable optical properties. Density functional theory (DFT) calculations indicate an indirect-direct band-gap crossover composition when x > 0.50. These HDP materials emit over the entire visible light spectrum, centered at 600 ± 30 nm with full-width at half maxima of ca. 200 nm upon ultraviolet light excitation and a maximum PLQY of 34 ± 4% for Cs2Bi0.085In0.915AgCl6. Short-range structural insight for these materials is crucial to unravel the unique atomic-level structural properties which are difficult to distinguish by diffraction-based techniques. Hence, we demonstrate the advantage of using solid-state nuclear magnetic resonance (NMR) spectroscopy to deconvolute the local structural environments of these mixed-cationic HDPs. Using ultrahigh-field (21.14 T) NMR spectroscopy of quadrupolar nuclei (115In, 133Cs, and 209Bi), we show that there is a high degree of atomic-level B'(III)/B″(I) site ordering (i.e., no evidence of antisite defects). Furthermore, a combination of XRD, NMR, and DFT calculations was used to unravel the complete atomic-level random Bi3+/In3+ cationic mixing in Cs2Bi1-xInxAgCl6 HDPs. Briefly, this work provides an advance in understanding the photophysical properties that correlate long- to short-range structural elucidation of these newly developed solid-state white-light emitting HDP materials.

9.
ACS Appl Mater Interfaces ; 12(18): 20507-20513, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32320202

RESUMEN

We demonstrate a versatile and easily fabricated paper-based CO2 sensor. The sensor consists of a specially designed fluorescent color-shift chromophore infused into standard filter paper. The emission color of the resulting fluorescent paper changes upon exposure to CO2 due to the formation of carbonic acid, which underlies the sensing mechanism. By using a ratiometric method, the undesirable effects of photobleaching can be eliminated, leading to a stable and repeatable sensor performance. These multiuse sensors have a response time on the order of 1 min and feature low detection limits for a paper-based CO2 gas sensor, suggesting possible low-cost applications in smart buildings or other facilities in which CO2 levels are required to be continuously monitored.

10.
ACS Appl Mater Interfaces ; 12(10): 11467-11478, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-31904215

RESUMEN

Leading edge p-i-n type halide perovskite solar cells (PSCs) severely underperform n-i-p PSCs. p-i-n type PSCs that use PEDOT:PSS hole transport layers (HTLs) struggle to generate open-circuit photovoltage values higher than 1 V. NiO HTLs have shown greater promise in achieving high Voc values albeit inconsistently. In this report, a NiO nanomesh with Ni3+ defect grown by the hydrothermal method was used to obtain PSCs with Voc values that consistently exceeded 1.10 V (champion Voc = 1.14 V). A champion device photoconversion efficiency of 17.75% was observed. Density functional theory modeling was used to understand the interfacial properties of the NiO/perovskite interface. The PCE of PSCs constructed using the Ni3+-doped NiO nanomesh HTL was ∼34% higher than that of conventional compact NiO-based perovskite solar cells. A suite of characterization techniques such as transmission electron microscopy, field emission scanning electron microscopy, intensity-modulated photocurrent spectroscopy, intensity-modulated photovoltage spectroscopy, time-resolved photoluminescence, steady-state photoluminescence, and Kelvin probe force microscopy provided evidence of better film quality, enhanced charge transfer, and suppressed charge recombination in PSCs based on hydrothermally grown NiO nanostructures.

11.
ACS Appl Mater Interfaces ; 11(36): 33478-33488, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31414591

RESUMEN

Ratiometric photoluminescent detection of the toxicologically potent organophosphate ester nerve agents paraoxon (PX) and parathion (PT) using the complementary optical and chemical properties of the long Stokes shift green fluorescent protein variant, mAmetrine1.2 (mAm), and red-emitting silicon-based quantum dots (SiQDs) is reported. PX and PT selectively quench SiQD photoluminescence (PL) through a dynamic quenching mechanism, thereby, facilitating the development of a ratiometric sensor platform that shows micromolar limits of detection for PX and PT and that is unaffected by the presence of common inorganic and organic interferents. As a part of the present study, we also demonstrate that the paper-based sensors derived from mAm and SiQDs detect PX and PT at concentrations as low as 5 µM using a readily available commercial color analysis smartphone "app". The ratiometric sensor reported herein can potentially be used for the convenient and rapid on-site detection and quantification of PX and PT in real-world samples.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Agentes Nerviosos/análisis , Puntos Cuánticos/química , Silicio/química , Dispersión Dinámica de Luz , Luminiscencia , Tamaño de la Partícula , Solubilidad , Soluciones , Temperatura , Agua
12.
Nanoscale Res Lett ; 13(1): 383, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30488251

RESUMEN

The luminescence dynamics in ensembles of nanocrystals are complicated by a variety of processes, including the size-dependence of the radiative and non-radiative rates in inhomogeneous broadened samples and interparticle interactions. This results in a non-exponential decay, which for the specific case of silicon nanocrystals (SiNCs) has been widely modeled with a Kohlrausch or "stretched exponential" (SE) function. We first derive the population decay function for a luminescence decay following exp[- (t/τ)ß]. We then compare the distributions and mean times calculated by assuming that either the luminescence decay or the population decay follows this function and show that the results are significantly different for ß much below 1. We then apply these two types of SE functions as well as other models to the luminescence decay data from two thermally grown SiNC samples with different mean sizes. The mean lifetimes are strongly dependent on the experimental setup and the chosen fitting model, none of which appears to adequately describe the ensemble decay dynamics. Frequency-resolved spectroscopy (FRS) techniques are then applied to SiNCs in order to extract the lifetime distribution directly. The rate distribution has a half width of ~ 0.5 decades and mainly resembles a somewhat high-frequency-skewed lognormal function. The combination of TRS and FRS methods appear best suited to uncovering the luminescence dynamics of NC materials having a broad emission spectrum.

13.
Opt Express ; 24(22): 24959-24970, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828436

RESUMEN

We report on a flow-through optical sensor consisting of a microcapillary with mirrored channels. Illuminating the structure from the side results in a complicated spectral interference pattern due to the different cavities formed between the inner and outer capillary walls. Using a Fourier transform technique to isolate the desired channel modes and measure their resonance shift, we obtain a refractometric detection limit of (6.3 ± 1.1) x 10-6 RIU near a center wavelength of 600 nm. This simple device demonstrates experimental refractometric sensitivities up to (5.6 ± 0.2) x 102 nm/RIU in the visible spectrum, and it is calculated to reach 1540 nm/RIU with a detection limit of 2.3 x 10-6 RIU at a wavelength of 1.55 µm. These values are comparable to or exceed some of the best Fabry-Perot sensors reported to date. Furthermore, the device can function as a gas or liquid sensor or even as a pressure sensor owing to its high refractometric sensitivity and simple operation.

14.
Nano Lett ; 5(2): 383-7, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15794630

RESUMEN

Ensembles of iron nanocrystals up to 25 nm in diameter embedded in SiO(2) were found to exhibit an ultrafast magnetic response to a transient out-of-plane magnetic field. The response time varies as a function of in-plane bias magnetic field with the fastest rise times, as short as 26 ps, observed for both zero and high bias fields (140 kA/m). Analytical modeling and micromagnetic simulations confirm that magnetostatic interactions between nanoparticles play an important role in the dynamic response.


Asunto(s)
Campos Electromagnéticos , Hierro/química , Hierro/efectos de la radiación , Modelos Químicos , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Dióxido de Silicio/química , Simulación por Computador , Cinética , Ensayo de Materiales , Microscopía de Sonda de Barrido/métodos , Conformación Molecular , Nanoestructuras/ultraestructura , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...