Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(3): 1815-1830, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495707

RESUMEN

High-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmosocope (AO-pcMLO) is described. It allows for simultaneous confocal and phase contrast imaging with various directional multi-line illumination by using a single 2D camera and a digital micromirror device (DMD). Both vertical and horizontal line illumination directions were tested, for photoreceptor and vascular imaging. The phase contrast imaging provided improved visualization of retinal structures such as cone inner segments, vessel walls and red blood cells with images being acquired at frame rates up to 500 Hz. Blood flow velocities of small vessels (<40 µm in diameter) were measured using kymographs for capillaries and cross-correlation between subsequent images for arterioles or venules. Cardiac-related pulsatile patterns were observed with normal resting heart-beat rate, and instantaneous blood flow velocities from 0.7 to 20 mm/s were measured.

2.
Opt Lett ; 48(3): 791-794, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723590

RESUMEN

A high-speed, adaptive optics partially confocal multi-spot ophthalmoscope (AO-pcMSO) using a digital micromirror device (DMD) in the illumination channel and a fast 2D CMOS camera is described. The camera is synchronized with the DMD allowing projection of multiple, simultaneous AO-corrected spots onto the human retina. Spatial filtering on each raw retinal image before reconstruction works as an array virtual pinholes. A frame acquisition rate of 250 fps is achieved by applying this parallel projection scheme. The contrast improves by 2-3 fold when compared to a standard flood illumination architecture. Partially confocal images of the human retina show cone and rod photoreceptors over a range of retinal eccentricities.

3.
Transl Vis Sci Technol ; 11(8): 11, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35972433

RESUMEN

Purpose: To perform in vivo evaluation of the structural morphology and vascular plexuses of the neurosensory retina and choroid across vertebrate species using swept-source optical coherence tomography (SS-OCT) and SS-OCT angiography (SS-OCTA) imaging. Methods: A custom-built SS-OCT system with an incorporated flexible imaging arm was used to acquire the three-dimensional (3D) retinal OCT and vascular OCTA data of five different vertebrates: a mouse (C57BL/6J), a rat (Long Evans), a gray short-tailed opossum (Monodelphis domestica), a white sturgeon (Acipenser transmontanus), and a great horned owl (Bubo virginianus). Results: In vivo structural morphology of the retina and choroid, as well as en face OCTA images of retinal and choroidal vasculature of all species were generated. The retinal morphology and vascular plexuses were similar between rat and mouse, whereas distinct choroidal and paired superficial vessels were observed in the opossum retina. The retinal and vascular structure of the sturgeon, as well as the pecten oculi and overlying the avascular and choroidal vasculature in the owl retina are reported in vivo. Conclusions: A high-quality two-dimensional and 3D in vivo visualization of the retinal structures and en face visualization of the retina and choroidal vascular plexus of vertebrates was possible. Our studies affirm that SS-OCT and SS-OCTA are viable methods for evaluating the in vivo retinal and choroidal structure across terrestrial, aquatic, and aerial vertebrates. Translational Relevance: In vivo characterization of retinal morphology and vasculature plexus of multiple species using SS-OCT and SS-OCTA imaging can increase the pool of species available as models of human retinal diseases.


Asunto(s)
Coroides , Tomografía de Coherencia Óptica , Animales , Coroides/irrigación sanguínea , Coroides/diagnóstico por imagen , Angiografía con Fluoresceína/métodos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Long-Evans , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos
4.
Mol Ther Nucleic Acids ; 28: 613-622, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35614998

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-based genomic disruption of vascular endothelial growth factor A (Vegfa) with a single gRNA suppresses choroidal neovascularization (CNV) in preclinical studies, offering the prospect of long-term anti-angiogenesis therapy for neovascular age-related macular degeneration (AMD). Genome editing using CRISPR-CRISPR-associated endonucleases (Cas9) with multiple guide RNAs (gRNAs) can enhance gene-ablation efficacy by augmenting insertion-deletion (indel) mutations with gene truncations but may also increase the risk of off-target effects. In this study, we compare the effectiveness of adeno-associated virus (AAV)-mediated CRISPR-Cas9 systems using single versus paired gRNAs to target two different loci in the Vegfa gene that are conserved in human, rhesus macaque, and mouse. Paired gRNAs increased Vegfa gene-ablation rates in human cells in vitro but did not enhance VEGF suppression in mouse eyes in vivo. Genome editing using paired gRNAs also showed a similar degree of CNV suppression compared with single-gRNA systems. Unbiased genome-wide analysis using genome-wide unbiased identification of double-stranded breaks (DSBs) enabled by sequencing (GUIDE-seq) revealed weak off-target activity arising from the second gRNA. These findings suggest that in vivo CRISPR-Cas9 genome editing using two gRNAs may increase gene ablation but also the potential risk of off-target mutations, while the functional benefit of targeting an additional locus in the Vegfa gene as treatment for neovascular retinal conditions is unclear.

5.
Sci Rep ; 11(1): 16252, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376700

RESUMEN

Melanosomes, lipofuscin, and melanolipofuscin are the three principal types of pigmented granules found in retinal pigment epithelium (RPE) cells. Changes in the density of melanosomes and lipofuscin in RPE cells are considered hallmarks of various retinal diseases, including Stargardt disease and age-related macular degeneration (AMD). Herein, we report the potential of an in vivo multimodal imaging technique based on directional back-scattering and short-wavelength fundus autofluorescence (SW-FAF) to study disease-related changes in the density of melanosomes and lipofuscin granules in RPE cells. Changes in the concentration of these granules in Abca4-/- mice (a model of Stargardt disease) relative to age-matched wild-type (WT) controls were investigated. Directional optical coherence tomography (dOCT) was used to assess melanosome density in vivo, whereas the autofluorescence (AF) images and emission spectra acquired with a spectrometer-integrated scanning laser ophthalmoscope (SLO) were used to characterize lipofuscin and melanolipofuscin granules in the same RPE region. Subcellular-resolution ex vivo imaging using confocal fluorescence microscopy and electron microscopy was performed on the same tissue region to visualize and quantify melanosomes, lipofuscin, and melanolipofuscin granules. Comparisons between in vivo and ex vivo results confirmed an increased concentration of lipofuscin granules and decreased concentration of melanosomes in the RPE of Abca4-/- mice, and provided an explanation for the differences in fluorescence and directionality of RPE scattering observed in vivo between the two mouse strains.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Melaninas/metabolismo , Melanosomas/patología , Imagen Multimodal/métodos , Epitelio Pigmentado de la Retina/patología , Enfermedad de Stargardt/patología , Animales , Ratones , Ratones Noqueados , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Epitelio Pigmentado de la Retina/metabolismo , Enfermedad de Stargardt/diagnóstico por imagen
6.
Comput Methods Programs Biomed ; 201: 105949, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33567382

RESUMEN

BACKGROUND AND OBJECTIVE: Automatic segmentation of retinal blood vessels makes a major contribution in CADx of various ophthalmic and cardiovascular diseases. A procedure to segment thin and thick retinal vessels is essential for medical analysis and diagnosis of related diseases. In this article, a novel methodology for robust vessel segmentation is proposed, handling the existing challenges presented in the literature. METHODS: The proposed methodology consists of three stages, pre-processing, main processing, and post-processing. The first stage consists of applying filters for image smoothing. The main processing stage is divided into two configurations, the first to segment thick vessels through the new optimized top-hat, homomorphic filtering, and median filter. Then, the second configuration is used to segment thin vessels using the proposed optimized top-hat, homomorphic filtering, matched filter, and segmentation using the MCET-HHO multilevel algorithm. Finally, morphological image operations are carried out in the post-processing stage. RESULTS: The proposed approach was assessed by using two publicly available databases (DRIVE and STARE) through three performance metrics: specificity, sensitivity, and accuracy. Analyzing the obtained results, an average of 0.9860, 0.7578 and 0.9667 were respectively achieved for DRIVE dataset and 0.9836, 0.7474 and 0.9580 for STARE dataset. CONCLUSIONS: The numerical results obtained by the proposed technique, achieve competitive average values with the up-to-date techniques. The proposed approach outperform all leading unsupervised methods discussed in terms of specificity and accuracy. In addition, it outperforms most of the state-of-the-art supervised methods without the computational cost associated with these algorithms. Detailed visual analysis has shown that a more precise segmentation of thin vessels was possible with the proposed approach when compared with other procedures.


Asunto(s)
Algoritmos , Vasos Retinianos , Bases de Datos Factuales , Fondo de Ojo , Procesamiento de Imagen Asistido por Computador , Vasos Retinianos/diagnóstico por imagen
7.
Biomed Opt Express ; 12(12): 7849-7871, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35003871

RESUMEN

Several specialized retinal optical coherence tomography (OCT) acquisition and processing methods have been recently developed to allow in vivo probing of light-evoked photoreceptors function, focusing on measurements in individual photoreceptors (rods and cones). Recent OCT investigations in humans and experimental animals have shown that the outer segments in dark-adapted rods and cones elongate in response to the visible optical stimuli that bleach fractions of their visual photopigment. We have previously successfully contributed to these developments by implementing OCT intensity-based "optoretinograms" (ORG), the paradigm of using near-infrared OCT (NIR OCT) to measure bleaching-induced back-scattering and/or elongation changes of photoreceptors in the eye in vivo. In parallel, several groups have successfully implemented phase-based ORGs, mainly in human studies, exploiting changes in the phases of back-scattered light. This allowed more sensitive observations of tiny alterations of photoreceptors structures. Applications of the phase-based ORG have been implemented primarily in high speed and cellular resolution AO-OCT systems that can visualize photoreceptor mosaic, allowing phase measurements of path length changes in outer segments of individual photoreceptors. The phase-based ORG in standard resolution OCT systems is much more demanding to implement and has not been explored extensively. This manuscript describes our efforts to implement a phase analysis framework to retinal images acquired with a standard resolution and raster scanning OCT system, which offers much lower phase stability than line-field or full-field OCT detection schemes due to the relatively slower acquisition speed. Our initial results showcase the successful extraction of phase-based ORG signal from the B-scans acquired at ∼100 Hz rate and its favorable comparison with intensity-based ORG signal extracted from the same data sets. We implemented the calculation of phase-based ORG signals using Knox-Thompson paths and modified signal recovery by adding decorrelation weights. The phase-sensitive ORG signal analysis developed here for mouse retinal raster scanning OCT systems could be in principle extended to clinical retinal raster scanning OCT systems, potentially opening doors for clinically friendly ORG probing.

8.
Invest Ophthalmol Vis Sci ; 61(13): 1, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33137194

RESUMEN

Purpose: To investigate the major organelles of the retinal pigment epithelium (RPE) in wild-type (WT, control) mice and their changes in pigmented Abca4 knockout (Abca4-/-) mice with in situ morphologic, spatial, and spectral characterization of live ex vivo flat-mounted RPE using multicolor confocal fluorescence microscopy (MCFM). Methods: In situ imaging of RPE flat-mounts of agouti Abca4-/- (129S4), agouti WT (129S1/SvlmJ) controls, and B6 albino mice (C57BL/6J-Tyrc-Brd) was performed with a Nikon A1 confocal microscope. High-resolution confocal image z-stacks of the RPE cell mosaic were acquired with four different excitation wavelengths (405 nm, 488 nm, 561 nm, and 640 nm). The autofluorescence images of RPE, including voxel-by-voxel emission spectra, were acquired and processed with Nikon NIS-AR Elements software. Results: The 3-dimensional multicolor confocal images provided a detailed visualization of the RPE cell mosaic, including its melanosomes and lipofuscin granules, and their varying characteristics in the different mice strains. The autofluorescence spectra, spatial distribution, and morphologic features of melanosomes and lipofuscin granules were measured. Increased numbers of lipofuscin and reduced numbers of melanosomes were observed in the RPE of Abca4-/- mice relative to controls. Conclusions: A detailed assessment of the RPE autofluorescent granules and their changes ex vivo was possible with MCFM. For all excitation wavelengths, autofluorescence from the RPE cells was predominantly contributed by lipofuscin granules, while melanosomes were found to be essentially nonfluorescent. The red shift of the emission peak confirmed the presence of multiple chromophores within lipofuscin granules. The elevated autofluorescence levels in Abca4-/- mice correlated well with the increased number of lipofuscin granules.


Asunto(s)
Lipofuscina/metabolismo , Melanosomas/metabolismo , Orgánulos/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Femenino , Imagenología Tridimensional , Lipofuscina/química , Melanosomas/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Epitelio Pigmentado de la Retina/diagnóstico por imagen
9.
Neurophotonics ; 6(4): 041105, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31528657

RESUMEN

It has been recently demonstrated that structures corresponding to the cell bodies of highly transparent cells in the retinal ganglion cell layer could be visualized noninvasively in the living human eye by optical coherence tomography (OCT) via temporal averaging. Inspired by this development, we explored the application of volumetric temporal averaging in mice, which are important models for studying human retinal diseases and therapeutic interventions. A general framework of temporal speckle-averaging (TSA) of OCT and optical coherence tomography angiography (OCTA) is presented and applied to mouse retinal volumetric data. Based on the image analysis, the eyes of mice under anesthesia exhibit only minor motions, corresponding to lateral displacements of a few micrometers and rotations of a fraction of 1 deg. Moreover, due to reduced eye movements under anesthesia, there is a negligible amount of motion artifacts within the volumes that need to be corrected to achieve volume coregistration. In addition, the relatively good optical quality of the mouse ocular media allows for cellular-resolution imaging without adaptive optics (AO), greatly simplifying the experimental system, making the proposed framework feasible for large studies. The TSA OCT and TSA OCTA results provide rich information about new structures previously not visualized in living mice with non-AO-OCT. The mechanism of TSA relies on improving signal-to-noise ratio as well as efficient suppression of speckle contrast due to temporal decorrelation of the speckle patterns, enabling full utilization of the high volumetric resolution offered by OCT and OCTA.

10.
J Biomed Opt ; 24(6): 1-10, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31254332

RESUMEN

Optical coherence tomography (OCT) is a powerful tool in ophthalmology that provides in vivo morphology of the retinal layers and their light scattering properties. The directional (angular) reflectivity of the retinal layers was investigated with focus on the scattering from retinal pigment epithelium (RPE). The directional scattering of the RPE was studied in three mice strains with three distinct melanin concentrations: albino (BALB/c), agouti (129S1/SvlmJ), and strongly pigmented (C57BL/6J). The backscattering signal strength was measured with a directional OCT system in which the pupil entry position of the narrow OCT beam can be varied across the dilated pupil of the eyes of the mice. The directional reflectivity of other retinal melanin-free layers, including the internal and external limiting membranes, and Bruch's membrane (albinos) were also measured and compared between the strains. The intensity of light backscattered from these layers was found highly sensitive to the angle of illumination, whereas the inner/outer segment (IS/OS) junctions showed a reduced sensitivity. The reflections from the RPE are largely insensitive in highly pigmented mice. The differences in directional scattering between strains shows that directionality decreases with an increase in melanin concentrations in RPE, suggesting increasing contribution of Mie scattering by melanosomes.


Asunto(s)
Técnicas de Diagnóstico Oftalmológico , Melaninas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Tomografía de Coherencia Óptica/métodos , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Enfermedades de la Retina/diagnóstico , Dispersión de Radiación
11.
Biomed Opt Express ; 10(2): 552-570, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30800499

RESUMEN

Speckle is an inevitable consequence of the use of coherent light in imaging and acts as noise that corrupts image formation in most applications. Optical coherence tomographic imaging, as a technique employing coherence time gating, suffers from speckle. We present here a novel method of suppressing speckle noise intrinsically compatible with adaptive optics (AO) for confocal coherent imaging: modulation of the phase in the system pupil aperture with a segmented deformable mirror (DM) to introduce minor perturbations in the point spread function. This approach creates uncorrelated speckle patterns in a series of images, enabling averaging to suppress speckle noise while maintaining structural detail. A method is presented that efficiently determines the optimal range of modulation of DM segments relative to their AO-optimized position so that speckle noise is reduced while image resolution and signal strength are preserved. The method is active and independent of sample properties. Its effectiveness and efficiency are quantified and demonstrated by both ex vivo non-biological and in vivo biological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...