Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-516125

RESUMEN

SARS-CoV-2 mutational variants evade humoral immune responses elicited by vaccines and current monoclonal antibody (mAb) therapies. Novel antibody-based treatments will thus need to exhibit broad neutralization against different variants. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies into one antibody taking advantage of the avidity, synergy and cooperativity provided by targeting two different epitopes. Here we used controlled Fab-arm exchange (cFAE), a versatile and straightforward method, to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader but less potent antibodies that also neutralize SARS-CoV. We demonstrate that the parental IgGs rely on avidity for their neutralizing activity by comparing their potency to bsAbs containing one irrelevant "dead" Fab arm. We used single particle mass photometry to measure formation of antibody:spike complexes, and determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike (S), observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent or multivalent agents to provide a robust activity against circulating variants, as well as future SARS-like coronaviruses.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-512216

RESUMEN

The worldwide pandemic caused by SARS-CoV-2 has remained a human medical threat due to the continued evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants for therapeutic and prophylactic use. A stabilized autologous SARS-CoV-2 spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants of concern, with COVA309-35 being the most potent against the autologous virus, as well as against Omicron BA.1 and BA.2. When combining the COVA309 mAbs as cocktails or bispecific antibody formats, the breadth and potency was significantly improved against all tested variants. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-481778

RESUMEN

Using a recently introduced efficient mass spectrometry-based approach we monitored individual donors IgG1 clonal responses in molecular detail, examining SARS-CoV-2 spike-protein-specific IgG1 repertoires. We monitored the plasma clonal IgG1 profiles of 8 donors (4 male and 4 female) who had recently experienced an infection by either the wild type Wuhan Hu-1 virus or one of 3 VOCs (Alpha, Beta and Gamma). In these donors we charted the full plasma IgG1 repertoires as well as the IgG1 repertoires targeting the SARS-CoV-2 spike protein trimer as antigen. We observed that shortly after infection in between <0.1% to almost 10% of all IgG1 antibody molecules present in plasma did bind to the spike protein. Each donor displayed a unique plasma IgG1 repertoire, but also each donor displayed a unique and polyclonal antibody response against the SARS-CoV-2 spike-protein variants. Our analyses revealed that certain clones exhibit (alike) binding affinity towards all four tested spike-protein variants, whereas other clones displayed strong unique mutant-specific affinity. We conclude that each infected person generates a unique polyclonal response following infection, whereby some of these clones can bind multiple viral variants, whereas other clones do not display such cross-reactivity. In general, by assessing IgG1 repertoires following infection it becomes possible to identify and select fully matured human plasma antibodies that target specific antigens, and display either high specificity or cross-reactivity versus mutated versions of the antigen, which will aid in selecting antibodies that may be developed into biotherapeutics.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268582

RESUMEN

Large-scale vaccination campaigns have prevented countless hospitalizations and deaths due to COVID-19. However, the emergence of SARS-CoV-2 variants that escape from immunity challenges the effectiveness of current vaccines. Given this continuing evolution, an important question is when and how to update SARS-CoV-2 vaccines to antigenically match circulating variants, similar to seasonal influenza viruses where antigenic drift necessitates periodic vaccine updates. Here, we studied SARS-CoV-2 antigenic drift by assessing neutralizing activity against variants-of-concern (VOCs) of a unique set of sera from patients infected with a range of VOCs. Infections with D614G or Alpha strains induced the broadest immunity, while individuals infected with other VOCs had more strain-specific responses. Omicron BA.1 and BA.2 were substantially resistant to neutralization by sera elicited by all other variants. Antigenic cartography revealed that Omicron BA.1 and BA.2 are antigenically most distinct from D614G, associated with immune escape and likely requiring vaccine updates to ensure vaccine effectiveness.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-470767

RESUMEN

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigated the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We found that [~]82% of SARS-CoV-2 S-reactive B cells show a naive phenotype, which represents an unusually high fraction of total human naive B cells ([~]0.1%). Approximately 10% of these naive S-reactive B cells shared an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. A proportion of memory B cells, comprising switched ([~]0.05%) and unswitched B cells ([~]0.04%), was also reactive with S and some of these cells were reactive with ADAMTS13, which is associated with thrombotic thrombocytopenia. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-453755

RESUMEN

The SARS-CoV-2 pandemic causes an ongoing global health crisis, which requires efficient and safe vaccination programs. Here, we present synthetic SARS-CoV2 S glycoprotein-coated liposomes that resemble in size and surface structure virus-like particles. Soluble S glycoprotein trimers were stabilized by formaldehyde cross-linking and coated onto lipid vesicles (S-VLP). Immunization of cynomolgus macaques with S-VLPs induced high antibody titers and TH1 CD4+ biased T cell responses. Although antibody responses were initially dominated by RBD specificity, the third immunization boosted non-RBD antibody titers. Antibodies showed potent neutralization against the vaccine strain and the Alpha variant after two immunizations and robust neutralization of Beta and Gamma strains. Challenge of animals with SARS-CoV-2 protected all vaccinated animals by sterilizing immunity. Thus, the S-VLP approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21256092

RESUMEN

Current SARS-CoV-2 vaccines are losing efficacy against emerging variants and may not protect against future novel coronavirus outbreaks, emphasizing the need for more broadly protective vaccines. To inform the development of a pan-coronavirus vaccine, we investigated the presence and specificity of cross-reactive antibodies against the spike (S) proteins of human coronaviruses (hCoV) after SARS-CoV-2 infection and vaccination. We found an 11 to 123-fold increase in antibodies binding to SARS-CoV and MERS-CoV as well as a 2 to 4-fold difference in antibodies binding to seasonal hCoVs in COVID-19 convalescent sera compared to pre-pandemic healthy donors, with the S2 subdomain of the S protein being the main target for cross-reactivity. In addition, we detected cross-reactive antibodies to all hCoV S proteins after SARS-CoV-2 S protein immunization in macaques, with higher responses for hCoV more closely related to SARS-CoV-2. These findings support the feasibility of and provide guidance for development of a pan-coronavirus vaccine.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21257441

RESUMEN

Emerging SARS-CoV-2 variants pose a threat to human immunity induced by natural infection and vaccination. We assessed the recognition of three variants of concern (B.1.1.7, B.1.351 and P.1) in cohorts of COVID-19 patients ranging in disease severity (n = 69) and recipients of the Pfizer/BioNTech vaccine (n = 50). Spike binding and neutralization against all three VOC was substantially reduced in the majority of samples, with the largest 4-7-fold reduction in neutralization being observed against B.1.351. While hospitalized COVID-19 patients and vaccinees maintained sufficient neutralizing titers against all three VOC, 39% of non-hospitalized patients did not neutralize B.1.351. Moreover, monoclonal neutralizing antibodies (NAbs) show sharp reductions in their binding kinetics and neutralizing potential to B.1.351 and P.1, but not to B.1.1.7. These data have implications for the degree to which pre-existing immunity can protect against subsequent infection with VOC and informs policy makers of susceptibility to globally circulating SARS-CoV-2 VOC.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-365726

RESUMEN

The SARS-CoV-2 pandemic is continuing to disrupt personal lives, global healthcare systems and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits and cynomolgus macaques. The vaccine-induced immunity protected macaques against a high dose challenge, resulting in strongly reduced viral infection and replication in upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...