Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36145607

RESUMEN

Dry eye disease (DED) is a multifactorial disorder in which the eyes respond to minor stimuli with abnormal sensations, such as dryness, blurring, foreign body sensation, discomfort, irritation, and pain. Corneal pain, as one of DED's main symptoms, has gained recognition due to its increasing prevalence, morbidity, and the resulting social burden. The cornea is the most innervated tissue in the body, and the maintenance of corneal integrity relies on a rich density of nociceptors, such as polymodal nociceptor neurons, cold thermoreceptor neurons, and mechano-nociceptor neurons. Their sensory responses to different stimulating forces are linked to the specific expression of transient receptor potential (TRP) channels. TRP channels are a group of unique ion channels that play important roles as cellular sensors for various stimuli. These channels are nonselective cation channels with variable Ca2+ selectivity. TRP homologs are a superfamily of 28 different members that are subdivided into 7 different subfamilies based on differences in sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells, where they affect various stress-induced regulatory responses essential for normal vision maintenance. This article reviews the current knowledge about the expression, function, and regulation of TRPs in ocular surface tissues. We also describe their implication in DED and ocular pain. These findings contribute to evidence suggesting that drug-targeting TRP channels may be of therapeutic benefit in the clinical setting of ocular pain.

2.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35408986

RESUMEN

The cornea, an anterior ocular tissue that notably serves to protect the eye from external insults and refract light, requires constant epithelium renewal and efficient healing following injury to maintain ocular homeostasis. Although several key cell populations and molecular pathways implicated in corneal wound healing have already been thoroughly investigated, insufficient/impaired or excessive corneal wound healing remains a major clinical issue in ophthalmology, and new avenues of research are still needed to further improve corneal wound healing. Because of its implication in numerous cellular/tissular homeostatic processes and oxidative stress, there is growing evidence of the role of Hedgehog signaling pathway in physiological and pathological corneal wound healing. Reviewing current scientific evidence, Hedgehog signaling and its effectors participate in corneal wound healing mainly at the level of the corneal and limbal epithelium, where Sonic Hedgehog-mediated signaling promotes limbal stem cell proliferation and corneal epithelial cell proliferation and migration following corneal injury. Hedgehog signaling could also participate in corneal epithelial barrier homeostasis and in pathological corneal healing such as corneal injury-related neovascularization. By gaining a better understanding of the role of this double-edged sword in physiological and pathological corneal wound healing, fascinating new research avenues and therapeutic strategies will undoubtedly emerge.


Asunto(s)
Lesiones de la Cornea , Epitelio Corneal , Córnea/metabolismo , Lesiones de la Cornea/metabolismo , Epitelio Corneal/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Cicatrización de Heridas/fisiología
3.
J Neuroinflammation ; 19(1): 63, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236378

RESUMEN

BACKGROUND: Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. METHODS: Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both 'M1' or classically activated state inflammatory cytokines (TNFα, IL1ß, and IL6), and 'M2' or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). RESULTS: The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype. CONCLUSION: Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.


Asunto(s)
Células Madre Mesenquimatosas , Células Ganglionares de la Retina , Animales , Modelos Animales de Enfermedad , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Neuroprotección/fisiología , Ratas , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo
4.
J Clin Med ; 11(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35207274

RESUMEN

The trabecular meshwork (TM) is the main site of drainage of the aqueous humor, and its dysfunction leads to intraocular pressure elevation, which is one of the main risk factors of glaucoma. We aimed to compare the effects on cytoskeleton organization and extracellular matrix (ECM) of latanoprost (LT) and a Rho-kinase inhibitor (ROCKi) on a transforming growth factor beta2 (TGF-ß2)-induced glaucoma-like model developed from primary culture of human TM cells (pHTMC). The TGF-ß2 stimulated pHTMC were grown and incubated with LT or a ROCKi (Y-27632) for 24 h. The expression of alpha-smooth muscle actin (αSMA) and fibronectin (FN), and phosphorylation of the myosin light chain (MLC-P) and Cofilin (Cofilin-P) were evaluated using immunofluorescence and Western blot. The architectural modifications were studied in a MatrigelTM 3D culture. TGF-ß2 increased the expression of αSMA and FN in pHTMC and modified the cytoskeleton with cross-linked actin network formation. LT did not alter the expression of αSMA but decreased FN deposition. The ROCKi decreased TGF-ß2-induced αSMA and FN expression, as well as MLC-P and Cofilin-P, and stimulated the cells to recover a basal cytoskeletal arrangement. In the preliminary 3D study, pHTMC organized in a mesh conformation showed the widening of the TM under the effect of Y-27632. By simultaneously modifying the organization of the cytoskeleton and the ECM, with fibronectin deposition and overexpression, TGF-ß2 reproduced the trabecular degeneration described in glaucoma. The ROCKi was able to reverse the TGF-ß2-induced cytoskeletal and ECM rearrangements. LT loosened the extracellular matrix but had no action on the stress fibers.

5.
Biomedicines ; 9(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34680542

RESUMEN

Background: This study aimed to compare the corneal nerve structural abnormalities detected using in vivo confocal microscopy (IVCM) in patients with neuropathic corneal pain (NCP) secondary to primary meibomian gland dysfunction (MGD) or autoimmune dry eye (AIDE). Methods: A two-stage retrospective nested case-control study was conducted. First, data from patients with either MGD or AIDE were assessed, selecting only cases with no corneal pain (VAS = 0) or severe pain (VAS ≥ 8). Ocular signs and symptoms of the 238 selected patients were compared between painful and painless cases. Next, painful patients with no corneal damage (Oxford score ≤ 1) were selected within each study group, defining the cases with NCP (i.e., "pain without stain"). IVCM images from all groups were compared with prospectively-recruited healthy controls, focusing on dendritiform cell density and nerve abnormalities (density, tortuosity, microneuromas). Results: AIDE patients had more ocular signs/symptoms than MGD patients. Compared with healthy controls, AIDE-related NCP patients showed increased nerve tortuosity and number of neuromas, whereas MGD-related NCP patients had reduced nerve density and increased number, perimeter, and area of microneuromas. Microneuromas were also observed in healthy controls. Furthermore, a higher number of microneuromas was found in MGD-related NCP compared to AIDE-related NCP or painless MGD. Conclusions: MGD-related NCP was associated with significantly more corneal nerve abnormalities than AIDE-related NCP or healthy controls. Although IVCM can be useful to detect NCP-related corneal nerve changes in such patients, the diagnosis of dry eye disease-related NCP will require an association of several IVCM-based criteria without relying solely on the presence of microneuromas.

6.
Anal Bioanal Chem ; 413(19): 4825-4836, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34125263

RESUMEN

The in-depth knowledge of lipid biological functions needs a comprehensive structural annotation including a method to locate fatty acid unsaturations, which remains a thorny problem. For this purpose, we have associated Grubbs' cross-metathesis reaction and liquid chromatography hyphenated to tandem mass spectrometry to locate double bond positions in lipid species. The pretreatment of lipid-containing samples by Grubbs' catalyst and an appropriate alkene generates substituted lipids through cross-metathesis reaction under mild, chemoselective, and reproducible conditions. A systematic LC-MS/MS analysis of the reaction mixture allows locating unambiguously the double bonds in fatty acid side chains of phospholipids, glycerolipids, and sphingolipids. This method has been successfully applied at a nanomole scale to commercial standard mixtures consisting of 10 lipid subclasses as well as in lipid extracts of human corneal epithelial (HCE) cell line allowing to pinpoint double bond of more than 90 species. This method has also been useful to investigate the lipid homeostasis alteration in an in vitro model of corneal toxicity, i.e., HCE cells incubated with benzalkonium chloride. The association of cross-metathesis and tandem mass spectrometry appears suitable to locate double bond positions in lipids involved in relevant biological processes.


Asunto(s)
Córnea/citología , Lipidómica/métodos , Lípidos/química , Espectrometría de Masas/métodos , Córnea/química , Humanos , Metabolismo de los Lípidos
7.
J Neuroinflammation ; 18(1): 79, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757529

RESUMEN

BACKGROUND: Pain is reported as the leading cause of disability in the common forms of inflammatory arthritis conditions. Acting as a key player in nociceptive processing, neuroinflammation, and neuron-glia communication, the chemokine CCL2/CCR2 axis holds great promise for controlling chronic painful arthritis. Here, we investigated how the CCL2/CCR2 system in the dorsal root ganglion (DRG) contributes to the peripheral inflammatory pain sensitization. METHODS: Repeated intrathecal (i.t.) administration of the CCR2 antagonist, INCB3344 was tested for its ability to reverse the nociceptive-related behaviors in the tonic formalin and complete Freund's adjuvant (CFA) inflammatory models. We further determined by qPCR the expression of CCL2/CCR2, SP and CGRP in DRG neurons from CFA-treated rats. Using DRG explants, acutely dissociated primary sensory neurons and calcium mobilization assay, we also assessed the release of CCL2 and sensitization of nociceptors. Finally, we examined by immunohistochemistry following nerve ligation the axonal transport of CCL2, SP, and CGRP from the sciatic nerve of CFA-treated rats. RESULTS: We first found that CFA-induced paw edema provoked an increase in CCL2/CCR2 and SP expression in ipsilateral DRGs, which was decreased after INCB3344 treatment. This upregulation in pronociceptive neuromodulators was accompanied by an enhanced nociceptive neuron excitability on days 3 and 10 post-CFA, as revealed by the CCR2-dependent increase in intracellular calcium mobilization following CCL2 stimulation. In DRG explants, we further demonstrated that the release of CCL2 was increased following peripheral inflammation. Finally, the excitation of nociceptors following peripheral inflammation stimulated the anterograde transport of SP at their peripheral nerve terminals. Importantly, blockade of CCR2 reduced sensory neuron excitability by limiting the calcium mobilization and subsequently decreased peripheral transport of SP towards the periphery. Finally, pharmacological inhibition of CCR2 reversed the pronociceptive action of CCL2 in rats receiving formalin injection and significantly reduced the neurogenic inflammation as well as the stimuli-evoked and movement-evoked nociceptive behaviors in CFA-treated rats. CONCLUSIONS: Our results provide significant mechanistic insights into the role of CCL2/CCR2 within the DRG in the development of peripheral inflammation, nociceptor sensitization, and pain hypersensitivity. We further unveil the therapeutic potential of targeting CCR2 for the treatment of painful inflammatory disorders.


Asunto(s)
Quimiocina CCL2/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Dolor/metabolismo , Receptores CCR2/antagonistas & inhibidores , Receptores CCR2/metabolismo , Animales , Células Cultivadas , Adyuvante de Freund/toxicidad , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inyecciones Espinales , Masculino , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Pirrolidinas/administración & dosificación , Ratas , Ratas Sprague-Dawley
8.
Prog Retin Eye Res ; 83: 100916, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33075485

RESUMEN

The pathophysiology of glaucoma is complex, multifactorial and not completely understood. Elevated intraocular pressure (IOP) and/or impaired retinal blood flow may cause initial optic nerve damage. In addition, age-related oxidative stress in the retina concurrently with chronic mechanical and vascular stress is crucial for the initiation of retinal neurodegeneration. Oxidative stress is closely related to cell senescence, mitochondrial dysfunction, excitotoxicity, and neuroinflammation, which are involved in glaucoma progression. Accumulating evidence from animal glaucoma models and from human ocular samples suggests a dysfunction of the para-inflammation in the retinal ganglion cell layer and the optic nerve head. Moreover, quite similar mechanisms in the anterior chamber could explain the trabecular meshwork dysfunction and the elevated IOP in primary open-angle glaucoma. On the other hand, ocular surface disease due to topical interventions is the most prominent and visible consequence of inflammation in glaucoma, with a negative impact on filtering surgery failure, topical treatment efficacy, and possibly on inflammation in the anterior segment. Consequently, glaucoma appears as an outstanding eye disease where inflammatory changes may be present to various extents and consequences along the eye structure, from the ocular surface to the posterior segment, and the visual pathway. Here we reviewed the inflammatory processes in all ocular structures in glaucoma from the back to the front of the eye and beyond. Our approach was to explain how para-inflammation is necessary to maintain homoeostasis, and to describe abnormal inflammatory findings observed in glaucomatous patients or in animal glaucoma models, supporting the hypothesis of a dysregulation of the inflammatory balance toward a pro-inflammatory phenotype. Possible anti-inflammatory therapeutic approaches in glaucoma are also discussed.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Animales , Glaucoma/terapia , Humanos , Inflamación , Presión Intraocular , Enfermedades Neuroinflamatorias , Malla Trabecular
9.
Front Cell Neurosci ; 14: 610342, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362474

RESUMEN

The cornea is the most densely innervated and sensitive tissue in the body. The cornea is exclusively innervated by C- and A-delta fibers, including mechano-nociceptors that are triggered by noxious mechanical stimulation, polymodal nociceptors that are excited by mechanical, chemical, and thermal stimuli, and cold thermoreceptors that are activated by cooling. Noxious stimulations activate corneal nociceptors whose cell bodies are located in the trigeminal ganglion (TG) and project central axons to the trigeminal brainstem sensory complex. Ocular pain, in particular, that driven by corneal nerves, is considered to be a core symptom of inflammatory and traumatic disorders of the ocular surface. Ocular surface injury affecting corneal nerves and leading to inflammatory responses can occur under multiple pathological conditions, such as chemical burn, persistent dry eye, and corneal neuropathic pain as well as after some ophthalmological surgical interventions such as photorefractive surgery. This review depicts the morphological and functional changes of corneal nerve terminals following corneal damage and dry eye disease (DED), both ocular surface conditions leading to sensory abnormalities. In addition, the recent fundamental and clinical findings of the importance of peripheral and central neuroimmune interactions in the development of corneal hypersensitivity are discussed. Next, the cellular and molecular changes of corneal neurons in the TG and central structures that are driven by corneal nerve abnormalities are presented. A better understanding of the corneal nerve abnormalities as well as neuroimmune interactions may contribute to the identification of a novel therapeutic targets for alleviating corneal pain.

10.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228217

RESUMEN

Dry eye disease (DED) is commonly associated with ocular surface inflammation and pain. In this study, we evaluated the effectiveness of repeated instillations of transient receptor potential melastatin 8 (TRPM8) ion channel antagonist M8-B on a mouse model of severe DED induced by the excision of extra-orbital lacrimal and Harderian glands. M8-B was topically administered twice a day from day 7 until day 21 after surgery. Cold and mechanical corneal sensitivities and spontaneous ocular pain were monitored at day 21. Ongoing and cold-evoked ciliary nerve activities were next evaluated by electrophysiological multi-unit extracellular recording. Corneal inflammation and expression of genes related to neuropathic pain and inflammation were assessed in the trigeminal ganglion. We found that DED mice developed a cold allodynia consistent with higher TRPM8 mRNA expression in the trigeminal ganglion (TG). Chronic M8-B instillations markedly reversed both the corneal mechanical allodynia and spontaneous ocular pain commonly associated with persistent DED. M8-B instillations also diminished the sustained spontaneous and cold-evoked ciliary nerve activities observed in DED mice as well as inflammation in the cornea and TG. Overall, our study provides new insight into the effectiveness of TRPM8 blockade for alleviating corneal pain syndrome associated with severe DED, opening a new avenue for ocular pain management.


Asunto(s)
Antiinflamatorios/farmacología , Síndromes de Ojo Seco/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Ácidos Nicotínicos/farmacología , Canales Catiónicos TRPM/genética , Tiofenos/farmacología , Administración Oftálmica , Animales , Antiinflamatorios/uso terapéutico , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Frío , Córnea/efectos de los fármacos , Córnea/metabolismo , Córnea/fisiopatología , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/complicaciones , Síndromes de Ojo Seco/genética , Síndromes de Ojo Seco/metabolismo , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Ganglios Parasimpáticos/efectos de los fármacos , Ganglios Parasimpáticos/metabolismo , Ganglios Parasimpáticos/fisiopatología , Regulación de la Expresión Génica , Glándula de Harder/cirugía , Hiperalgesia/etiología , Hiperalgesia/genética , Hiperalgesia/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Aparato Lagrimal/cirugía , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/etiología , Neuralgia/genética , Neuralgia/metabolismo , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/fisiopatología
11.
Biomed Pharmacother ; 132: 110794, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33035833

RESUMEN

Corneal pain is considered to be a core symptom of ocular surface disruption and inflammation. The management of this debilitating condition is still a therapeutic challenge. Recent evidence supports a role of the opioid system in the management of corneal nociception. However, the functional involvement of the mu opioid receptor (MOR) underlying this analgesic effect is not known. We first investigated the expression of the MOR in corneal nerve fibers and trigeminal ganglion (TG) neurons in control mice and a mouse model of corneal inflammatory pain. We then evaluated the anti-nociceptive and electrophysiological effects of DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol] enkephalin), a MOR-selective ligand. MOR immunoreactivity was detected in corneal nerve fibers and primary afferent neurons of the ophthalmic branch of the TG of naive mice. MOR expression was significantly higher in both structures under conditions of inflammatory corneal pain. Topical ocular administration of DAMGO strongly reduced both the mechanical (von Frey) and chemical (capsaicin) corneal hypersensitivity associated with inflammatory ocular pain. Repeated instillations of DAMGO also markedly reversed the elevated spontaneous activity of the ciliary nerve and responsiveness of corneal polymodal nociceptors that were observed in mice with corneal pain. Finally, these DAMGO-induced behavioral and electrophysiological responses were totally blunted by the topical application of naloxone methiodide, an opioid receptor antagonist. Overall, these results provide evidence that topical pharmacological MOR activation may constitute a therapeutic target for the treatment of corneal pain and improve corneal nerve function to alleviate chronic pain.


Asunto(s)
Analgésicos Opioides/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Dolor Ocular/tratamiento farmacológico , Receptores Opioides mu/agonistas , Administración Oftálmica , Analgésicos Opioides/administración & dosificación , Animales , Córnea/efectos de los fármacos , Córnea/inervación , Córnea/patología , Enfermedades de la Córnea/tratamiento farmacológico , Enfermedades de la Córnea/patología , Modelos Animales de Enfermedad , Encefalina Ala(2)-MeFe(4)-Gli(5)/administración & dosificación , Inflamación/tratamiento farmacológico , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Biochimie ; 178: 148-157, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32758686

RESUMEN

Detergent chemicals, widely used in household products, in pharmaceutical, medical, cosmetic and industrial fields, have been linked to side effects and involved in several eye diseases. On the ocular surface, detergents can interfere with the corneal epithelium, the most superficial layer of the cornea, representing a line of defence against external aggression. Despite its major role in numerous biological functions, there is still little data regarding disruption of lipid homeostasis induced by ocular irritants. To this purpose, a lipidomic analysis using UPLC-HRMS/MS-ESI ± was performed on human corneal epithelial (HCE) cells incubated with three widely known ocular irritants: benzalkonium chloride (BAK), sodium lauryl sulfate (SLS) and Triton X-100 (TXT). We found that these ocular irritants lead to a profound modification of the HCE cell lipidome. Indeed, the cell content of ceramide species increased widely while plasmalogens containing polyunsaturated fatty acid species, especially docosahexaenoic acids, decreased. Furthermore, these irritants upregulated the activity of phospholipase A2. The present study demonstrates that BAK, SLS and TXT induced disruption of the cell lipid homeostasis, highlighting that lipids mediate inflammatory and cell death processes induced by detergents in the cornea. Lipidomics may thus be regarded as a valuable tool to investigate new markers of corneal damage.


Asunto(s)
Detergentes/toxicidad , Epitelio Corneal/química , Epitelio Corneal/patología , Oftalmopatías/inducido químicamente , Irritantes/toxicidad , Lipidómica , Fosfolípidos/metabolismo , Esfingolípidos/metabolismo , Compuestos de Benzalconio/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Epitelio Corneal/efectos de los fármacos , Oftalmopatías/metabolismo , Humanos , Inflamación/inducido químicamente , Metabolismo de los Lípidos/efectos de los fármacos , Octoxinol/toxicidad , Plasmalógenos/metabolismo , Dodecil Sulfato de Sodio/toxicidad
13.
J Exp Med ; 217(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32648893

RESUMEN

Wallerian degeneration (WD) is a process of autonomous distal degeneration of axons upon injury. Macrophages (MPs) of the peripheral nervous system (PNS) are the main cellular agent controlling this process. Some evidence suggests that resident PNS-MPs along with MPs of hematogenous origin may be involved, but whether these two subsets exert distinct functions is unknown. Combining MP-designed fluorescent reporter mice and coherent anti-Stokes Raman scattering (CARS) imaging of the sciatic nerve, we deciphered the spatiotemporal choreography of resident and recently recruited MPs after injury and unveiled distinct functions of these subsets, with recruited MPs being responsible for efficient myelin stripping and clearance and resident MPs being involved in axonal regrowth. This work provides clues to tackle selectively cellular processes involved in neurodegenerative diseases.


Asunto(s)
Macrófagos/inmunología , Degeneración Walleriana/diagnóstico por imagen , Degeneración Walleriana/inmunología , Animales , Axones/fisiología , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/fisiología , Microscopía Óptica no Lineal , Remielinización/genética , Nervio Ciático/diagnóstico por imagen , Nervio Ciático/inmunología , Nervio Ciático/lesiones , Transcriptoma
14.
Metabolites ; 10(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486009

RESUMEN

Annotation of lipids in untargeted lipidomic analysis remains challenging and a systematic approach needs to be developed to organize important datasets with the help of bioinformatic tools. For this purpose, we combined tandem mass spectrometry-based molecular networking with retention time (tR) prediction to annotate phospholipid and sphingolipid species. Sixty-five standard compounds were used to establish the fragmentation rules of each lipid class studied and to define the parameters governing their chromatographic behavior. Molecular networks (MNs) were generated through the GNPS platform using a lipid standards mixture and applied to lipidomic study of an in vitro model of dry eye disease, i.e., human corneal epithelial (HCE) cells exposed to hyperosmolarity (HO). These MNs led to the annotation of more than 150 unique phospholipid and sphingolipid species in the HCE cells. This annotation was reinforced by comparing theoretical to experimental tR values. This lipidomic study highlighted changes in 54 lipids following HO exposure of corneal cells, some of them being involved in inflammatory responses. The MN approach coupled to tR prediction thus appears as a suitable and robust tool for the discovery of lipids involved in relevant biological processes.

15.
Artículo en Inglés | MEDLINE | ID: mdl-32438057

RESUMEN

Dry eye disease (DED) is a multifactorial chronic inflammatory disease of the ocular surface characterized by tear film instability, hyperosmolarity, cell damage and inflammation. Hyperosmolarity is strongly established as the core mechanism of the DED. Benzalkonium chloride (BAK) - a quaternary ammonium salt commonly used in eye drops for its microbicidal properties - is well known to favor the onset of DED. Currently, little data are available regarding lipid metabolism alteration in ocular surface epithelial cells in the course of DED. Our aim was to explore the effects of benzalkonium chloride or hyperosmolarity exposure on the human corneal epithelial (HCE) cell lipidome, two different conditions used as in vitro models of DED. For this purpose, we performed a lipidomic analysis using UPLC-HRMS-ESI+/-. Our results demonstrated that BAK or hyperosmolarity induced important modifications in HCE lipidome including major changes in sphingolipids, glycerolipids and glycerophospholipids. For both exposures, an increase in ceramide was especially exhibited. Hyperosmolarity specifically induced triglyceride accumulation resulting in lipid droplet formation. Conversely, BAK induced an increase in lysophospholipids and a decrease in phospholipids. This lipidomic study highlights the lipid changes involved in inflammatory responses following BAK or hyperosmolarity exposures. Thereby, lipid research appears of great interest, as it could lead to the discovery of new biomarkers and therapeutic targets for the diagnosis and treatment of dry eye disease.


Asunto(s)
Compuestos de Benzalconio/farmacología , Córnea/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Concentración Osmolar , Conservadores Farmacéuticos/farmacología , Ceramidas/metabolismo , Citocinas/metabolismo , Síndromes de Ojo Seco/metabolismo , Gotas Lipídicas , Lipidómica , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
Cells ; 9(3)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106630

RESUMEN

Glaucoma is one of the leading causes of irreversible blindness in the world and remains a major public health problem. To date, incomplete knowledge of this disease's pathophysiology has resulted in current therapies (pharmaceutical or surgical) unfortunately having only a slowing effect on disease progression. Recent research suggests that glaucomatous optic neuropathy is a disease that shares common neuroinflammatory mechanisms with "classical" neurodegenerative pathologies. In addition to the death of retinal ganglion cells (RGCs), neuroinflammation appears to be a key element in the progression and spread of this disease. Indeed, early reactivity of glial cells has been observed in the retina, but also in the central visual pathways of glaucoma patients and in preclinical models of ocular hypertension. Moreover, neuronal lesions are not limited to retinal structure, but also occur in central visual pathways. This review summarizes and puts into perspective the experimental and clinical data obtained to date to highlight the need to develop neuroprotective and immunomodulatory therapies to prevent blindness in glaucoma patients.


Asunto(s)
Glaucoma/fisiopatología , Inflamación/complicaciones , Enfermedades del Nervio Óptico/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos
17.
Toxicol Lett ; 319: 74-84, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707104

RESUMEN

Benzalkonium chloride (BAK), a quaternary ammonium compound widely used as disinfecting agent as well as preservative in eye drops is known to induce toxic effects on the ocular surface with inflammation and corneal nerve damage leading to dry eye disease (DED) in the medium-to-long term. The aim of this study was to evaluate in vitro the toxicity of a conditioned medium produced by corneal epithelial cells previously exposed to BAK (BAK-CM) on trigeminal neuronal cells. A human corneal epithelial (HCE) cell line was exposed to 5.10-3% BAK (i.e. 0.005% BAK) for 15 min and let recover for 5 h to prepare a BAK-CM. This BAK concentration is the lowest one found in eye drops. After this recovery period, BAK effect on HCE cells displayed cytotoxicity, morphological alteration, apoptosis, oxidative stress, ATP release, CCL2 and IL6 gene induction, as well as an increase in CCL2, IL-6 and MIF release. Next, a mouse trigeminal ganglion primary culture was exposed to the BAK-CM for 2 h, 4 h or 24 h. Whereas BAK-CM did not alter neuronal cell morphology, or induced neuronal cytotoxicity or oxidative stress, BAK-CM induced gene expression of Fos (neuronal activation marker), Atf3 (neuronal injury marker), Ccl2 and Il6 (inflammatory markers). Two and 4 h BAK-CM exposure promoted a neuronal damage (ATF-3, phospho-p38 increases; phospho-Stat3 decreases) while 24 h-BAK-CM exposure initiated a prosurvival pathway activation (phospho-p44/42, phospho-Akt increases; ATF-3, GADD153, active Caspase-3 decreases). In conclusion, this in vitro model, simulating paracrine mechanisms, represents an interesting tool to highlight the indirect toxic effects of BAK or any other xenobiotic on corneal trigeminal neurons and may help to better understand the cellular mechanisms that occur during DED pathophysiology.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos de Benzalconio/toxicidad , Células Epiteliales/efectos de los fármacos , Epitelio Corneal/efectos de los fármacos , Inflamación/inducido químicamente , Neuronas/efectos de los fármacos , Conservadores Farmacéuticos/toxicidad , Ganglio del Trigémino/efectos de los fármacos , Factor de Transcripción Activador 3/biosíntesis , Factor de Transcripción Activador 3/efectos de los fármacos , Animales , Línea Celular , Síndromes de Ojo Seco/inducido químicamente , Síndromes de Ojo Seco/patología , Epitelio Corneal/citología , Expresión Génica/efectos de los fármacos , Humanos , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ganglio del Trigémino/citología
18.
J Neuroinflammation ; 16(1): 268, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31847868

RESUMEN

BACKGROUND: Dry eye disease (DED) is a multifactorial disease associated with ocular surface inflammation, pain, and nerve abnormalities. We studied the peripheral and central neuroinflammatory responses that occur during persistent DED using molecular, cellular, behavioral, and electrophysiological approaches. METHODS: A mouse model of DED was obtained by unilateral excision of the extraorbital lachrymal gland (ELG) and Harderian gland (HG) of adult female C57BL/6 mice. In vivo tests were conducted at 7, 14, and 21 days (d) after surgery. Tear production was measured by a phenol red test and corneal alterations and inflammation were assessed by fluorescein staining and in vivo confocal microscopy. Corneal nerve morphology was evaluated by nerve staining. Mechanical corneal sensitivity was monitored using von Frey filaments. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous corneal nerve activity. RT-qPCR and immunostaining were used to determine RNA and protein levels at d21. RESULTS: We observed a marked reduction of tear production and the development of corneal inflammation at d7, d14, and d21 post-surgery in DED animals. Chronic DE induced a reduction of intraepithelial corneal nerve terminals. Behavioral and electrophysiological studies showed that the DED animals developed time-dependent mechanical corneal hypersensitivity accompanied by increased spontaneous ciliary nerve fiber electrical activity. Consistent with these findings, DED mice exhibited central presynaptic plasticity, demonstrated by a higher Piccolo immunoreactivity in the ipsilateral trigeminal brainstem sensory complex (TBSC). At d21 post-surgery, mRNA levels of pro-inflammatory (IL-6 and IL-1ß), astrocyte (GFAP), and oxidative (iNOS2 and NOX4) markers increased significantly in the ipsilateral trigeminal ganglion (TG). This correlated with an increase in Iba1, GFAP, and ATF3 immunostaining in the ipsilateral TG of DED animals. Furthermore, pro-inflammatory cytokines (IL-6, TNFα, IL-1ß, and CCL2), iNOS2, neuronal (ATF3 and FOS), and microglial (CD68 and Itgam) markers were also upregulated in the TBSC of DED animals at d21, along with increased immunoreactivity against GFAP and Iba1. CONCLUSIONS: Overall, these data highlight peripheral sensitization and neuroinflammatory responses that participate in the development and maintenance of dry eye-related pain. This model may be useful to identify new analgesic molecules to alleviate ocular pain.


Asunto(s)
Córnea/fisiopatología , Síndromes de Ojo Seco/fisiopatología , Hiperalgesia/fisiopatología , Plasticidad Neuronal/fisiología , Núcleos del Trigémino/fisiopatología , Animales , Enfermedad Crónica , Femenino , Inflamación/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ganglio del Trigémino/fisiopatología
19.
Front Neurosci ; 13: 497, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178682

RESUMEN

Photophobia may arise from various causes and frequently accompanies numerous ocular diseases. In modern highly illuminated world, complaints about greater photosensitivity to blue light increasingly appear. However, the pathophysiology of photophobia is still debated. In the present work, we investigated in vivo the role of various neural pathways potentially implicated in blue-light aversion. Moreover, we studied the light-induced neuroinflammatory processes on the ocular surface and in the trigeminal pathways. Adult male C57BL/6J mice were exposed either to blue (400-500 nm) or to yellow (530-710 nm) LED light (3 h, 6 mW/cm2). Photosensitivity was measured as the time spent in dark or illuminated parts of the cage. Pharmacological treatments were applied: topical instillation of atropine, pilocarpine or oxybuprocaine, intravitreal injection of lidocaine, norepinephrine or "blocker" of the visual photoreceptor transmission, and intraperitoneal injection of a melanopsin antagonist. Clinical evaluations (ocular surface state, corneal mechanical sensitivity and tear quantity) were performed directly after exposure to light and after 3 days of recovery in standard light conditions. Trigeminal ganglia (TGs), brainstems and retinas were dissected out and conditioned for analyses. Mice demonstrated strong aversion to blue but not to yellow light. The only drug that significantly decreased the blue-light aversion was the intraperitoneally injected melanopsin antagonist. After blue-light exposure, dry-eye-related inflammatory signs were observed, notably after 3 days of recovery. In the retina, we observed the increased immunoreactivity for GFAP, ATF3, and Iba1; these data were corroborated by RT-qPCR. Moreover, retinal visual and non-visual photopigments distribution was altered. In the trigeminal pathway, we detected the increased mRNA expression of cFOS and ATF3 as well as alterations in cytokines' levels. Thus, the wavelength-dependent light aversion was mainly mediated by melanopsin-containing cells, most likely in the retina. Other potential pathways of light reception were also discussed. The phototoxic message was transmitted to the trigeminal system, inducing both inflammation at the ocular surface and stress in the retina. Further investigations of retina-TG connections are needed.

20.
Pain ; 160(2): 307-321, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30412056

RESUMEN

Ocular pain is a core symptom of inflammatory or traumatic disorders affecting the anterior segment. To date, the management of chronic ocular pain remains a therapeutic challenge in ophthalmology. The main endogenous opioids (enkephalins) play a key role in pain control but exhibit only transient analgesic effects due to their rapid degradation. The aim of this study was to explore the antinociceptive and anti-inflammatory effects of topical administration of PL265 (a dual enkephalinase inhibitor) on murine models of corneal pain. On healthy corneas, chronic PL265 topical administration did not alter corneal integrity nor modify corneal mechanical and chemical sensitivity. Then, on murine models of corneal pain, we showed that repeated instillations of PL265 (10 mM) significantly reduced corneal mechanical and chemical hypersensitivity. PL265-induced corneal analgesia was completely antagonized by naloxone methiodide, demonstrating that PL265 antinociceptive effects were mediated by peripheral corneal opioid receptors. Moreover, flow cytometry (quantification of CD11b+ cells) and in vivo confocal microscopy analysis revealed that instillations of PL265 significantly decreased corneal inflammation in a corneal inflammatory pain model. Chronic PL265 topical administration also decreased Iba1 and neuronal injury marker (ATF3) staining in the nucleus of primary sensory neurons of ipsilateral trigeminal ganglion. These results open a new avenue for ocular pain treatment based on the enhancement of endogenous opioid peptides' analgesic effects in tissues of the anterior segment of the eye. Dual enkephalinase inhibitor PL265 seems to be a promising topical treatment for safe and effective alleviation of ocular pain and inflammation.


Asunto(s)
Córnea/patología , Inhibidores Enzimáticos/administración & dosificación , Inflamación/tratamiento farmacológico , Dolor/tratamiento farmacológico , Propionatos/administración & dosificación , Administración Tópica , Animales , Antiinfecciosos Locales/uso terapéutico , Compuestos de Benzalconio/uso terapéutico , Capsaicina/toxicidad , Córnea/efectos de los fármacos , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/complicaciones , Modelos Animales de Enfermedad , Hiperalgesia/fisiopatología , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Naloxona/toxicidad , Antagonistas de Narcóticos/toxicidad , Dolor/etiología , Umbral del Dolor/efectos de los fármacos , Fármacos del Sistema Sensorial/toxicidad , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...