Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Signal Process ; 72: 70-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38283047

RESUMEN

We introduce Cayley transform ellipsoid fitting (CTEF), an algorithm that uses the Cayley transform to fit ellipsoids to noisy data in any dimension. Unlike many ellipsoid fitting methods, CTEF is ellipsoid specific, meaning it always returns elliptic solutions, and can fit arbitrary ellipsoids. It also significantly outperforms other fitting methods when data are not uniformly distributed over the surface of an ellipsoid. Inspired by growing calls for interpretable and reproducible methods in machine learning, we apply CTEF to dimension reduction, data visualization, and clustering in the context of cell cycle and circadian rhythm data and several classical toy examples. Since CTEF captures global curvature, it extracts nonlinear features in data that other machine learning methods fail to identify. For example, on the clustering examples CTEF outperforms 10 popular algorithms.

2.
J Math Biol ; 85(4): 36, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36125562

RESUMEN

The Susceptible-Infectious-Recovered (SIR) equations and their extensions comprise a commonly utilized set of models for understanding and predicting the course of an epidemic. In practice, it is of substantial interest to estimate the model parameters based on noisy observations early in the outbreak, well before the epidemic reaches its peak. This allows prediction of the subsequent course of the epidemic and design of appropriate interventions. However, accurately inferring SIR model parameters in such scenarios is problematic. This article provides novel, theoretical insight on this issue of practical identifiability of the SIR model. Our theory provides new understanding of the inferential limits of routinely used epidemic models and provides a valuable addition to current simulate-and-check methods. We illustrate some practical implications through application to a real-world epidemic data set.


Asunto(s)
Enfermedades Transmisibles , Epidemias , Enfermedades Transmisibles/epidemiología , Brotes de Enfermedades , Susceptibilidad a Enfermedades/epidemiología , Modelos Epidemiológicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...