Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 79: 101861, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142970

RESUMEN

OBJECTIVE: The dorsal vagal complex (DVC) of the hindbrain is a major point of integration for central and peripheral signals that regulate a wide variety of metabolic functions to maintain energy balance. The REV-ERB nuclear receptors are important modulators of molecular metabolism, but their role in the DVC has yet to be established. METHODS: Male REV-ERBα/ß floxed mice received stereotaxic injections of a Cre expressing virus to the DVC to create the DVC REV-ERBα/ß double knockout (DVC RDKO). Control littermates received stereotaxic injections to the DVC of a green fluorescent protein expressing virus. Animals were maintained on a normal chow diet or a 60% high-fat diet to observe the metabolic phenotype arising from DVC RDKO under healthy and metabolically stressed conditions. RESULTS: DVC RDKO animals on high-fat diet exhibited increased weight gain compared to control animals maintained on the same diet. Increased weight gain in DVC RDKO animals was associated with decreased basal metabolic rate and dampened signature of brown adipose tissue activity. RDKO decreased gene expression of calcitonin receptor in the DVC and tyrosine hydroxylase in the brown adipose tissue. CONCLUSIONS: These results suggest a previously unappreciated role of REV-ERB nuclear receptors in the DVC for maintaining energy balance and metabolic rate potentially through indirect sympathetic outflow to the brown adipose tissue.


Asunto(s)
Tejido Adiposo Pardo , Rombencéfalo , Animales , Masculino , Ratones , Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Rombencéfalo/metabolismo , Aumento de Peso
2.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38077098

RESUMEN

Circadian desynchrony induced by shiftwork or jetlag is detrimental to metabolic health, but how synchronous/desynchronous signals are transmitted among tissues is unknown. Here we report that liver molecular clock dysfunction is signaled to the brain via the hepatic vagal afferent nerve (HVAN), leading to altered food intake patterns that are corrected by ablation of the HVAN. Hepatic branch vagotomy also prevents food intake disruptions induced by high-fat diet feeding and reduces body weight gain. Our findings reveal a previously unrecognized homeostatic feedback signal that relies on synchrony between the liver and the brain to control circadian food intake patterns. This identifies the hepatic vagus nerve as a therapeutic target for obesity in the setting of chrono-disruption. One Sentence Summary: The hepatic vagal afferent nerve signals internal circadian desynchrony between the brain and liver to induce maladaptive food intake patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...