Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Mycoses ; 67(4): e13719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38551063

RESUMEN

BACKGROUND: Surveillance studies are crucial for updating trends in Aspergillus species and antifungal susceptibility information. OBJECTIVES: Determine the Aspergillus species distribution and azole resistance prevalence during this 3-year prospective surveillance study in a Spanish hospital. MATERIALS AND METHODS: Three hundred thirty-five Aspergillus spp. clinical and environmental isolates were collected during a 3-year study. All isolates were screened for azole resistance using an agar-based screening method and resistance was confirmed by EUCAST antifungal susceptibility testing. The azole resistance mechanism was confirmed by sequencing the cyp51A gene and its promoter. All Aspergillus fumigatus strains were genotyped using TRESPERG analysis. RESULTS: Aspergillus fumigatus was the predominant species recovered with a total of 174 strains (51.94%). The rest of Aspergillus spp. were less frequent: Aspergillus niger (14.93%), Aspergillus terreus (9.55%), Aspergillus flavus (8.36%), Aspergillus nidulans (5.37%) and Aspergillus lentulus (3.28%), among other Aspergillus species (6.57%). TRESPERG analysis showed 99 different genotypes, with 72.73% of the strains being represented as a single genotype. Some genotypes were common among clinical and environmental A. fumigatus azole-susceptible strains, even when isolated months apart. We describe the occurrence of two azole-resistant A. fumigatus strains, one clinical and another environmental, that were genotypically different and did not share genotypes with any of the azole-susceptible strains. CONCLUSIONS: Aspergillus fumigatus strains showed a very diverse population although several genotypes were shared among clinical and environmental strains. The isolation of azole-resistant strains from both settings suggest that an efficient analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus.


Asunto(s)
Aspergilosis , Aspergillus nidulans , Humanos , Azoles/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis/microbiología , Prevalencia , Estudios Prospectivos , Farmacorresistencia Fúngica , Aspergillus fumigatus , Hospitales , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana
2.
J Fungi (Basel) ; 10(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38535218

RESUMEN

One of the systems responsible for the recognition and repair of mistakes occurring during cell replication is the DNA mismatch repair (MMR) system. Two major protein complexes constitute the MMR pathway: MutS and MutL. Here, we investigated the possible relation of four A. fumigatus MMR genes (msh2, msh6, pms1, and mlh1) with the development of azole resistance related to the phenomenon of multi-drug resistance. We examined the MMR gene variations in 163 Aspergillus fumigatus genomes. Our analysis showed that genes msh2, pms1, and mlh1 have low genetic variability and do not seem to correlate with drug resistance. In contrast, there is a nonsynonymous mutation (G240A) in the msh6 gene that is harbored by 42% of the strains, most of them also harboring the TR34/L98H azole resistance mechanism in cyp51A. The msh6 gene was deleted in the akuBKU80A. fumigatus strain, and the ∆msh6 isolates were analyzed for fitness, azole susceptibility, and virulence capacity, showing no differences compared with the akuBKU80 parental strain. Wild-type msh6 and Δmsh6 strains were grown on high concentrations of azole and other non-azole fungicides used in crop protection. A 10- and 2-fold higher mutation frequency in genes that confer resistance to boscalid and benomyl, respectively, were observed in Δmsh6 strains compared to the wild-type. This study suggests a link between Msh6 and fungicide resistance acquisition.

3.
J Fungi (Basel) ; 9(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37623576

RESUMEN

Invasive aspergillosis (IA) is a major cause of morbidity and mortality in patients receiving allogeneic haematopoieticcell transplantation. The deep immunosuppression and a variety of potential additional complications developed in these patients result in IA reaching mortality rates of around 50-60%. This mortality is even higher when the patients are infected with azole-resistant isolates, demonstrating that, despite the complexity of management, adequate azole treatment can have a beneficial effect. It is therefore paramount to understand the reasons why antifungal treatment of IA infections caused by azole-susceptible isolates is often unsuccessful. In this respect, there are already various factors known to be important for treatment efficacy, for instance the drug concentrations achieved in the blood, which are thus often monitored. We hypothesize that antifungal persistence may be another important factor to consider. In this study we present two case reports of haematological patients who developed proven IA and suffered treatment failure, despite having been infected with susceptible isolates, receiving correct antifungal treatment and reaching therapeutic levels of the azole. Microbiological analysis of the recovered infective isolates showed that the patients were infected with multiple strains, several of which were persisters to voriconazole and/or isavuconazole. Therefore, we propose that azole persistence may have contributed to therapeutic failure in these patients and that this phenomenon should be considered in future studies.

4.
Microbiol Spectr ; : e0477022, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912663

RESUMEN

Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.

5.
J Fungi (Basel) ; 8(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35330318

RESUMEN

Most cases of invasive aspergillosis are caused by Aspergillus fumigatus, whose conidia are ubiquitous in the environment. Additionally, in indoor environments, such as houses or hospitals, conidia are frequently detected too. Hospital-acquired aspergillosis is usually associated with airborne fungal contamination of the hospital air, especially after building construction events. A. fumigatus strain typing can fulfill many needs both in clinical settings and otherwise. The high incidence of aspergillosis in COVID patients from our hospital, made us wonder if they were hospital-acquired aspergillosis. The purpose of this study was to evaluate whether the hospital environment was the source of aspergillosis infection in CAPA patients, admitted to the Hospital Universitario Central de Asturias, during the first and second wave of the COVID-19 pandemic, or whether it was community-acquired aspergillosis before admission. During 2020, sixty-nine A. fumigatus strains were collected for this study: 59 were clinical isolates from 28 COVID-19 patients, and 10 strains were environmentally isolated from seven hospital rooms and intensive care units. A diagnosis of pulmonary aspergillosis was based on the ECCM/ISHAM criteria. Strains were genotyped by PCR amplification and sequencing of a panel of four hypervariable tandem repeats within exons of surface protein coding genes (TRESPERG). A total of seven genotypes among the 10 environmental strains and 28 genotypes among the 59 clinical strains were identified. Genotyping revealed that only one environmental A. fumigatus from UCI 5 (box 54) isolated in October (30 October 2020) and one A. fumigatus isolated from a COVID-19 patient admitted in Pneumology (Room 532-B) in November (24 November 2020) had the same genotype, but there was a significant difference in time and location. There was also no relationship in time and location between similar A. fumigatus genotypes of patients. The global A. fumigatus, environmental and clinical isolates, showed a wide diversity of genotypes. To our knowledge, this is the first study monitoring and genotyping A. fumigatus isolates obtained from hospital air and COVID-19 patients, admitted with aspergillosis, during one year. Our work shows that patients do not acquire A. fumigatus in the hospital. This proves that COVID-associated aspergillosis in our hospital is not a nosocomial infection, but supports the hypothesis of "community aspergillosis" acquisition outside the hospital, having the home environment (pandemic period at home) as the main suspected focus of infection.

6.
Mycoses ; 65(2): 178-185, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34806786

RESUMEN

Antifungal susceptibility testing is an essential tool for guiding antifungal therapy. Reference methods are complex and usually only available in specialised laboratories. We have designed an expanded agar-based screening method for the detection of azole-resistant Aspergillus fumigatus isolates. Normally, identification of resistance mechanisms is obtained only after sequencing the cyp51A gene and promoter. However, our screening method provides azole resistance detection and presumptive resistance mechanisms identification. A previous agar-based method consisting of four wells containing voriconazole, itraconazole, posaconazole and a growth control, detected azole resistance to clinical azoles. Here, we have modified the concentrations of voriconazole and posaconazole to adapt to the updated EUCAST breakpoints against A. fumigatus. We have also expanded the method to include environmental azoles to assess azole resistance and the azole resistance mechanism involved. We used a collection of A. fumigatus including 54 azole-resistant isolates with Cyp51A modifications (G54, M220, G448S, TR53 , TR34 /L98H, TR46 /Y121F/T289A, TR34 /L98H/S297T/F495I), and 50 azole susceptible isolates with wild-type Cyp51A. The screening method detects azole-resistant A. fumigatus isolates when there is growth in any of the azole-containing wells after 48h. The growth pattern in the seven azoles tested helps determine the underlying azole resistance mechanism. This approach is designed for surveillance screening of A. fumigatus azole-resistant isolates and can be useful for the clinical management of patients prior to antifungal susceptibility testing confirmation.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Agar , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana , Voriconazol/farmacología
7.
Molecules ; 26(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34641518

RESUMEN

Invasive aspergillosis, mainly caused by Aspergillus fumigatus, can lead to severe clinical outcomes in immunocompromised individuals. Antifungal treatment, based on the use of azoles, is crucial to increase survival rates. However, the recent emergence of azole-resistant A. fumigatus isolates is affecting the efficacy of the clinical therapy and lowering the success rate of azole strategies against aspergillosis. Azole resistance mechanisms described to date are mainly associated with mutations in the azole target gene cyp51A that entail structural changes in Cyp51A or overexpression of the gene. However, strains lacking cyp51A modifications but resistant to clinical azoles have recently been detected. Some genes have been proposed as new players in azole resistance. In this study, the gene hmg1, recently related to azole resistance, and its paralogue hmg2 were studied in a collection of fifteen azole-resistant strains without cyp51A modifications. Both genes encode HMG-CoA reductases and are involved in the ergosterol biosynthesis. Several mutations located in the sterol sensing domain (SSD) of Hmg1 (D242Y, G307D/S, P309L, K319Q, Y368H, F390L and I412T) and Hmg2 (I235S, V303A, I312S, I360F and V397C) were detected. The role of these mutations in conferring azole resistance is discussed in this work.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Hidroximetilglutaril-CoA Reductasas/genética , Antifúngicos/química , Aspergilosis/microbiología , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Azoles/química , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Hidroximetilglutaril-CoA Reductasas/química , Pruebas de Sensibilidad Microbiana , Mutación Puntual , Regiones Promotoras Genéticas , Secuenciación Completa del Genoma
8.
J Fungi (Basel) ; 7(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401764

RESUMEN

Azole-resistant Aspergillus fumigatus is an emerging worldwide problem with increasing reports of therapy failure cases produced by resistant isolates. A case of azole-resistant A. fumigatus hospital colonization in a patient is reported here. Investigations of the hospital environment led to the recovery of A. fumigatus strains harboring the TR34/L98H and the G448S Cyp51A azole resistance mechanisms. Isolate genotyping showed that one strain from the environment was isogenic with the patient strains. These are the first environmental A. fumigatus azole resistant strains collected in a hospital in Spain; it supports the idea of the hospital environment as a source of dissemination and colonization/infection by azole resistant A. fumigatus in patients. The isolation of an azole-resistant strain from an azole-naïve patient is an interesting finding, suggesting that an effective analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus. The emergence and spread of these resistance mechanisms in A. fumigatus is of major concern because it confers high resistance to voriconazole and is associated with treatment failure in patients with invasive aspergillosis.

9.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33355104

RESUMEN

Drug resistance poses a serious threat to human health and agricultural production. Azole drugs are the largest group of 14-α sterol demethylation inhibitor fungicides that are used both in agriculture and in clinical practice. As plant pathogenic molds share their natural environment with fungi that cause opportunistic infections in humans, both are exposed to a strong and persistent pressure of demethylase inhibitor (DMI) fungicides, including imidazole and triazole drugs. As a result, a loss of efficacy has occurred for this drug class in several species. In the clinical setting, Aspergillus fumigatus azole resistance is a growing public health problem and finding the source of this resistance has gained much attention. It is urgent to determine if there is a direct link between the agricultural use of azole compounds and the different A. fumigatus resistance mechanisms described for clinical triazoles. In this work we have performed A. fumigatus susceptibility testing to clinical triazoles and crop protection DMIs using a collection of azole susceptible and resistant strains which harbor most of the described azole resistance mechanisms. Various DMI susceptibility profiles have been found in the different A. fumigatus populations groups based on their azole resistance mechanism and previous WGS analysis, which suggests that the different resistance mechanisms have different origins and are specifically associated to the local use of a particular DMI.Importance Due to the worldwide emergence of A. fumigatus azole resistance, this opportunistic pathogen poses a serious health threat and, therefore, it has been included in the Watch List of the CDC 2019 Antimicrobial Resistance Threats Report. Azoles play a critical role in the control and management of fungal diseases, not only in the clinical setting but also in agriculture. Thus, azole resistance leads to a limited therapeutic arsenal which reduces the treatment options for aspergillosis patients, increasing their mortality risk. Evidence is needed to understand whether A. fumigatus azole resistance is emerging from an agricultural source due to the extended use of demethylase inhibitors as fungicides, or whether it is coming from somewhere else such as the clinical setting. If the environmental route is demonstrated, the current use and management of azole antifungal compounds might be forced to change in the forthcoming years.

11.
Nature ; 588(7839): 688-692, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268895

RESUMEN

Inflammasomes are important sentinels of innate immune defence that are activated in response to diverse stimuli, including pathogen-associated molecular patterns (PAMPs)1. Activation of the inflammasome provides host defence against aspergillosis2,3, which is a major health concern for patients who are immunocompromised. However, the Aspergillus fumigatus PAMPs that are responsible for inflammasome activation are not known. Here we show that the polysaccharide galactosaminogalactan (GAG) of A. fumigatus is a PAMP that activates the NLRP3 inflammasome. The binding of GAG to ribosomal proteins inhibited cellular translation machinery, and thus activated the NLRP3 inflammasome. The galactosamine moiety bound to ribosomal proteins and blocked cellular translation, which triggered activation of the NLRP3 inflammasome. In mice, a GAG-deficient Aspergillus mutant (Δgt4c) did not elicit protective activation of the inflammasome, and this strain exhibited enhanced virulence. Moreover, administration of GAG protected mice from colitis induced by dextran sulfate sodium in an inflammasome-dependent manner. Thus, ribosomes connect the sensing of this fungal PAMP to the activation of an innate immune response.


Asunto(s)
Aspergilosis/prevención & control , Aspergillus fumigatus/metabolismo , Inflamasomas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Polisacáridos/metabolismo , Animales , Aspergilosis/inmunología , Aspergilosis/microbiología , Aspergillus fumigatus/inmunología , Biopelículas , Colitis/inducido químicamente , Colitis/prevención & control , Sulfato de Dextran , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Inmunidad Innata , Inflamasomas/inmunología , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Polisacáridos/inmunología , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
12.
J Fungi (Basel) ; 6(4)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255951

RESUMEN

The emergence and spread of Aspergillus fumigatus azole resistance has been acknowledged worldwide. The main problem of azole resistance is the limited therapeutic options for patients suffering aspergillosis. Azole resistance mechanisms have been mostly linked to the enzyme Cyp51A, a target of azole drugs, with a wide variety of modifications responsible for the different resistance mechanisms described to date. However, there are increasing reports of A. fumigatus strains showing azole resistance without Cyp51A modifications, and thus, novel resistance mechanisms are being explored. Here, we characterized two isogenic A. fumigatus clinical strains isolated two years apart from the same patient. Both strains were resistant to clinical azoles but showed different azole resistance mechanisms. One strain (CM8940) harbored a previously described G54A mutation in Cyp51A while the other strain (CM9640) had a novel G457S mutation in Cyp51B, the other target of azoles. In addition, this second strain had a F390L mutation in Hmg1. CM9640 showed higher levels of gene expression of cyp51A, cyp51B and hmg1 than the CM8940 strain. The role of the novel mutation found in Cyp51B together with the contribution of a mutation in Hmg1 in azole resistance is discussed.

13.
Genes (Basel) ; 11(10)2020 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-33080784

RESUMEN

Infections caused by Aspergillus species are being increasingly reported. Aspergillus flavus is the second most common species within this genus causing invasive infections in humans, and isolates showing azole resistance have been recently described. A. flavus has three cyp51-related genes (cyp51A, cyp51B, and cyp51C) encoding 14-α sterol demethylase-like enzymes which are the target of azole drugs. In order to study triazole drug resistance in A. flavus, three strains showing reduced azole susceptibility and 17 azole susceptible isolates were compared. The three cyp51-related genes were amplified and sequenced. A comparison of the deduced Cyp51A, Cyp51B, and Cyp51C protein sequences with other protein sequences from orthologous genes in different filamentous fungi led to a protein identity that ranged from 50% to 80%. Cyp51A and Cyp51C presented several synonymous and non-synonymous point mutations among both susceptible and non-susceptible strains. However, two amino acid mutations were present only in two resistant isolates: one strain harbored a P214L substitution in Cyp51A, and another a H349R in Cyp51C that also showed an increase of cyp51A and cyp51C gene expression compared to the susceptible strain ATCC2004304. Isolates that showed reduced in vitro susceptibility to clinical azoles exhibited a different susceptibility profile to demethylation inhibitors (DMIs). Although P214L substitution might contribute to azole resistance, the role of H349R substitution together with changes in gene expression remains unclear.


Asunto(s)
Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/genética , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Mutación Puntual , Antifúngicos/farmacología
14.
Artículo en Inglés | MEDLINE | ID: mdl-31285229

RESUMEN

Antifungal resistance is one of the major causes of the increasing mortality rates for fungal infections, especially for those caused by Aspergillus spp. A surveillance program was established in 2014 in the Spanish National Center for Microbiology for tracking resistance in the most prevalent Aspergillus species. A total of 273 samples were included in the study and were initially classified as susceptible or resistant according to EUCAST breakpoints. Several Aspergillus cryptic species were found within the molecularly identified isolates. Cyp51 mutations were characterized for Aspergillus fumigatus, Aspergillus terreus, and Aspergillus flavussensu stricto strains that were classified as resistant. Three A. fumigatus sensu stricto strains carried the TR34/L98H resistance mechanism, while two harbored G54R substitution and one harbored the TR46/Y121F/T289A mechanism. Seventeen strains had no mutations in cyp51A, with ten of them resistant only to isavuconazole. Three A. terreussensu stricto strains harbored D344N substitution in cyp51A, one of them combined with M217I, and another carried an A249G novel mutation. Itraconazole-resistant A. flavussensu stricto strains harbored P220L and H349R alterations in cyp51A and cyp51C, respectively, that need further investigation on their implication in azole resistance.


Asunto(s)
Antifúngicos/farmacología , Aspergillus flavus/genética , Aspergillus fumigatus/genética , Aspergillus/genética , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Sustitución de Aminoácidos , Aspergilosis/tratamiento farmacológico , Aspergilosis/epidemiología , Aspergilosis/microbiología , Aspergillus/efectos de los fármacos , Aspergillus/enzimología , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/enzimología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Expresión Génica , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Nitrilos/farmacología , Vigilancia en Salud Pública , Piridinas/farmacología , España/epidemiología , Triazoles/farmacología , Voriconazol/farmacología
15.
Artículo en Inglés | MEDLINE | ID: mdl-31001487

RESUMEN

Candida auris is an emerging fungal pathogen of great concern among the scientific community because it is causing an increasing number of hospital outbreaks of difficult management worldwide. In addition, isolates from this species frequently present reduced susceptibility to azole and echinocandin drugs. For this reason, it is necessary to develop new antifungal strategies to better control the disease caused by this yeast. In this work, we screened drugs from the Prestwick chemical library, which contains 1,280 off-patent compounds that are already approved by the Food and Drug Administration, with the aim of identifying molecules with antifungal activity against C. auris. In an initial screening, we looked for drugs that inhibited the growth of three different C. auris strains and found 27 of them which it did so. Ten active compounds were selected to test the susceptibility profile by using the EUCAST protocol. Antifungal activity was confirmed for seven drugs with MICs ranging from 0.5 to 64 mg/L. Some of these drugs were also tested in combination with voriconazole and anidulafungin at sub-inhibitory concentrations. Our results suggest synergistic interactions between suloctidil and voriconazole with fractional inhibitory concentration index (FICI) values of 0.11 to 0.5 and between ebselen and anidulafungin (FICI, 0.12 to 0.44). Our findings indicate that drug repurposing could be a viable alternative to managing infections by C. auris.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/crecimiento & desarrollo , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Suloctidil/farmacología , Voriconazol/farmacología
16.
mBio ; 10(1)2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755510

RESUMEN

Fungal cell wall mannans are complex carbohydrate polysaccharides with different structures in yeasts and molds. In contrast to yeasts, their biosynthetic pathway has been poorly investigated in filamentous fungi. In Aspergillus fumigatus, the major mannan structure is a galactomannan that is cross-linked to the ß-1,3-glucan-chitin cell wall core. This polymer is composed of a linear mannan with a repeating unit composed of four α1,6-linked and α1,2-linked mannoses with side chains of galactofuran. Despite its use as a biomarker to diagnose invasive aspergillosis, its biosynthesis and biological function were unknown. Here, we have investigated the function of three members of the Ktr (also named Kre2/Mnt1) family (Ktr1, Ktr4, and Ktr7) in A. fumigatus and show that two of them are required for the biosynthesis of galactomannan. In particular, we describe a newly discovered form of α-1,2-mannosyltransferase activity encoded by the KTR4 gene. Biochemical analyses showed that deletion of the KTR4 gene or the KTR7 gene leads to the absence of cell wall galactomannan. In comparison to parental strains, the Δktr4 and Δktr7 mutants showed a severe growth phenotype with defects in polarized growth and in conidiation, marked alteration of the conidial viability, and reduced virulence in a mouse model of invasive aspergillosis. In yeast, the KTR proteins are involved in protein 0- and N-glycosylation. This study provided another confirmation that orthologous genes can code for proteins that have very different biological functions in yeasts and filamentous fungi. Moreover, in A. fumigatus, cell wall mannans are as important structurally as ß-glucans and chitin.IMPORTANCE The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It allows fungal pathogens to survive environmental challenge posed by nutrient stress and host defenses, and it also is central to polarized growth. The cell wall is mainly composed of polysaccharides organized in a three-dimensional network. Aspergillus fumigatus produces a cell wall galactomannan whose biosynthetic pathway and biological functions remain poorly defined. Here, we described two new mannosyltransferases essential to the synthesis of the cell wall galactomannan. Their absence leads to a growth defect with misregulation of polarization and altered conidiation, with conidia which are bigger and more permeable than the conidia of the parental strain. This study showed that in spite of its low concentration in the cell wall, this polysaccharide is absolutely required for cell wall stability, for apical growth, and for the full virulence of A. fumigatus.


Asunto(s)
Aspergillus fumigatus/enzimología , Aspergillus fumigatus/crecimiento & desarrollo , Pared Celular/metabolismo , Mananos/biosíntesis , Manosiltransferasas/metabolismo , Animales , Aspergillus fumigatus/metabolismo , Modelos Animales de Enfermedad , Galactosa/análogos & derivados , Eliminación de Gen , Aspergilosis Pulmonar Invasiva/microbiología , Aspergilosis Pulmonar Invasiva/patología , Manosiltransferasas/genética , Ratones , Viabilidad Microbiana , Esporas Fúngicas/crecimiento & desarrollo , Virulencia
17.
Front Microbiol ; 9: 1626, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30079058

RESUMEN

Aspergillus fumigatus molecular typing has become increasingly more important for detecting outbreaks as well as for local and global epidemiological investigations and surveillance. Over the years, many different molecular methods have been described for genotyping this species. Some outstanding approaches are based on microsatellite markers (STRAf assay, which is the current gold standard), or based on sequencing data (TRESP typing improved in this work with a new marker and was renamed TRESPERG). Both methodologies were used to type a collection of 212 A. fumigatus isolates that included 70 azole resistant strains with diverse resistance mechanisms from different geographic locations. Our results showed that both methods are totally reliable for epidemiological investigations showing similar stratification of the A. fumigatus population. STRAf assay offered higher discriminatory power (D = 0.9993) than the TRESPERG typing method (D = 0.9972), but the latter does not require specific equipment or skilled personnel, allowing for a prompt integration into any clinical microbiology laboratory. Among azole resistant isolates, two groups were differentiated considering their resistance mechanisms: cyp51A single point mutations (G54, M220, or G448), and promoter tandem repeat integrations with or without cyp51A modifications (TR34/L98H, TR46/Y121F/A289T, or TR53). The genotypic differences were assessed to explore the population structure as well as the genetic relationship between strains and their azole resistance profile. Genetic cluster analyses suggested that our A. fumigatus population was formed by 6-7 clusters, depending on the methodology. Also, the azole susceptible and resistance population showed different structure and organization. The combination of both methodologies resolved the population structure in a similar way to what has been described in whole-genome sequencing works.

18.
Genes (Basel) ; 9(7)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029559

RESUMEN

Aspergillus fumigatus is a ubiquitous saprophytic mold and a major pathogen in immunocompromised patients. The effectiveness of triazole compounds, the A. fumigatus first line treatment, is being threatened by a rapid and global emergence of azole resistance. Whole genome sequencing (WGS) has emerged as an invaluable tool for the analysis of genetic differences between A. fumigatus strains, their genetic background, and antifungal resistance development. Although WGS analyses can provide a valuable amount of novel information, there are some limitations that should be considered. These analyses, based on genome-wide comparative data and single nucleotide variant (SNV) calling, are dependent on the quality of sequencing, assembling, the variant calling criteria, as well as on the suitable selection of the reference genome, which must be genetically close to the genomes included in the analysis. In this study, 28 A. fumigatus genomes sequenced in-house and 73 available in public data bases have been analyzed. All genomes were distributed in four clusters and showed a variable number of SNVs depending on the genome used as reference (Af293 or A1163). Each reference genome belonged to a different cluster. The results highlighted the importance of choosing the most suitable A. fumigatus reference genome to avoid misleading conclusions.

19.
Artículo en Inglés | MEDLINE | ID: mdl-29632011

RESUMEN

Triazole antifungal compounds are the first treatment choice for invasive aspergillosis. However, in the last decade the rate of azole resistance among Aspergillus fumigatus strains has increased notoriously. The main resistance mechanisms are well defined and mostly related to point mutations of the azole target, 14-α sterol demethylase (cyp51A), with or without tandem repeat integrations in the cyp51A promoter. Furthermore, different combinations of five Cyp51A mutations (F46Y, M172V, N248T, D255E, and E427K) have been reported worldwide in about 10% of all A. fumigatus isolates tested. The azole susceptibility profile of these strains shows elevated azole MICs, although on the basis of the azole susceptibility breakpoints, these strains are not considered azole resistant. The purpose of the study was to determine whether these cyp51A polymorphisms (single nucleotide polymorphisms [SNPs]) are responsible for the azole susceptibility profile and whether they are reflected in a poorer azole treatment response in vivo that could compromise patient treatment and outcome. A mutant with a cyp51A deletion was generated and became fully susceptible to all azoles tested. Also, three cyp51A gene constructions with different combinations of SNPs were generated and reintroduced into an azole-susceptible wild-type (WT) strain (the ΔakuBKU80 strain). The alternative model host Galleria mellonella was used to compare the virulence and voriconazole response of G. mellonella larvae infected with A. fumigatus strains with WT cyp51A or cyp51A with SNPs. All strains were pathogenic in G. mellonella larvae, although they did not respond similarly to voriconazole therapeutic doses. Finally, the full genomes of these strains were sequenced and analyzed in comparison with those of A. fumigatus WT strains, revealing that they belong to different strain clusters or lineages.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Voriconazol/farmacología , Sustitución de Aminoácidos/genética , Animales , Aspergillus fumigatus/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/microbiología , Mutación Puntual/genética , Polimorfismo de Nucleótido Simple/genética , Triazoles/farmacología
20.
Mycoses ; 61(3): 172-178, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29082564

RESUMEN

A clear link between mating type and virulence has been demonstrated for some fungal pathogens, but not for Aspergillus fumigatus as of yet. An association between mating type and invasiveness has recently been established. The mating type proportion (MAT1-1:MAT1-2) of 213 A. fumigatus strains was determined (48.5%:51.5%) and results were in agreement with previous studies. However, these percentages changed when the strain collection was divided into azole-susceptible and -resistant strains. The 163 susceptible strains kept these proportions, but among the 50 azole-resistant strains 60.0% MAT1-1 and 40% MAT1-2 were found. Moreover, looking at the clinical outcome associated to 27 azole-resistant strains, we found that MAT1-1 was linked to a high mortality rate (64%), whereas the rate associated to MAT1-2 genotype was markedly lower (15%). The pathogenicity linked to the Mat type was tested in a Galleria mellonella model of infection, showing that MAT1-1 strains were consistently more pathogenic than MAT1-2, independently of their susceptibility phenotype. This data would suggest that A. fumigatus mating type determination at the time of diagnosis could have a prognostic value in invasive aspergillosis.


Asunto(s)
Aspergilosis/diagnóstico , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidad , Genes del Tipo Sexual de los Hongos , Infecciones Fúngicas Invasoras/diagnóstico , Animales , Aspergilosis/microbiología , Aspergilosis/mortalidad , Aspergillus fumigatus/efectos de los fármacos , Azoles/farmacología , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Genotipo , Humanos , Infecciones Fúngicas Invasoras/microbiología , Infecciones Fúngicas Invasoras/mortalidad , Larva/microbiología , Lepidópteros/microbiología , Pronóstico , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...