Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(3): 4831-4842, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35189057

RESUMEN

For decades, "all-or-none" and "kiss-and-run" were thought to be the only major exocytotic release modes in cell-to-cell communication, while the significance of partial release has not yet been widely recognized and accepted owing to the lack of direct evidence for exocytotic partial release. Correlative imaging with transmission electron microscopy and NanoSIMS imaging and a dual stable isotope labeling approach was used to study the cargo status of vesicles before and after exocytosis; demonstrating a measurable loss of transmitter in individual vesicles following stimulation due to partial release. Model secretory cells were incubated with 13C-labeled l-3,4-dihydroxyphenylalanine, resulting in the loading of 13C-labeled dopamine into their vesicles. A second label, di-N-desethylamiodarone, having the stable isotope 127I, was introduced during stimulation. A significant drop in the level of 13C-labeled dopamine and a reduction in vesicle size, with an increasing level of 127I-, was observed in vesicles of stimulated cells. Colocalization of 13C and 127I- in several vesicles was observed after stimulation. Thus, chemical visualization shows transient opening of vesicles to the exterior of the cell without full release the dopamine cargo. We present a direct calculation for the fraction of neurotransmitter release from combined imaging data. The average vesicular release is 60% of the total catecholamine. An important observation is that extracellular molecules can be introduced to cells during the partial exocytotic release process. This nonendocytic transport process appears to be a general route of entry that might be exploited pharmacologically.


Asunto(s)
Dopamina , Yodo , Transporte Biológico , Catecolaminas , Exocitosis
2.
Elife ; 102021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34787082

RESUMEN

Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.


Asunto(s)
Arginina Vasopresina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glucagón/metabolismo , Adulto , Animales , Arginina Vasopresina/administración & dosificación , Diabetes Mellitus Tipo 1/fisiopatología , Femenino , Humanos , Masculino , Ratones , Adulto Joven
3.
Q Rev Biophys ; 49: e12, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27659043

RESUMEN

Exocytosis is the fundamental process by which cells communicate with each other. The events that lead up to the fusion of a vesicle loaded with chemical messenger with the cell membrane were the subject of a Nobel Prize in 2013. However, the processes occurring after the initial formation of a fusion pore are very much still in debate. The release of chemical messenger has traditionally been thought to occur through full distention of the vesicle membrane, hence assuming exocytosis to be all or none. In contrast to the all or none hypothesis, here we discuss the evidence that during exocytosis the vesicle-membrane pore opens to release only a portion of the transmitter content during exocytosis and then close again. This open and closed exocytosis is distinct from kiss-and-run exocytosis, in that it appears to be the main content released during regular exocytosis. The evidence for this partial release via open and closed exocytosis is presented considering primarily the quantitative evidence obtained with amperometry.

4.
Sci Rep ; 6: 33702, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27650365

RESUMEN

Neurons communicate via an essential process called exocytosis. Cholesterol, an abundant lipid in both secretory vesicles and cell plasma membrane can affect this process. In this study, amperometric recordings of vesicular dopamine release from two different artificial cell models created from a giant unilamellar liposome and a bleb cell plasma membrane, show that with higher membrane cholesterol the kinetics for vesicular release are decelerated in a concentration dependent manner. This reduction in exocytotic speed was consistent for two observed modes of exocytosis, full and partial release. Partial release events, which only occurred in the bleb cell model due to the higher tension in the system, exhibited amperometric spikes with three distinct shapes. In addition to the classic transient, some spikes displayed a current ramp or plateau following the maximum peak current. These post spike features represent neurotransmitter release from a dilated pore before constriction and show that enhancing membrane rigidity via cholesterol adds resistance to a dilated pore to re-close. This implies that the cholesterol dependent biophysical properties of the membrane directly affect the exocytosis kinetics and that membrane tension along with membrane rigidity can influence the fusion pore dynamics and stabilization which is central to regulation of neurochemical release.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Exocitosis/fisiología , Neuronas/metabolismo , Animales , Neuronas/citología , Células PC12 , Ratas
5.
Bioinformatics ; 31(23): 3721-4, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26275895

RESUMEN

MOTIVATION: Metabolite databases provide a unique window into metabolome research allowing the most commonly searched biomarkers to be catalogued. Omic scale metabolite profiling, or metabolomics, is finding increased utility in biomarker discovery largely driven by improvements in analytical technologies and the concurrent developments in bioinformatics. However, the successful translation of biomarkers into clinical or biologically relevant indicators is limited. RESULTS: With the aim of improving the discovery of translatable metabolite biomarkers, we present search analytics for over one million METLIN metabolite database queries. The most common metabolites found in METLIN were cross-correlated against XCMS Online, the widely used cloud-based data processing and pathway analysis platform. Analysis of the METLIN and XCMS common metabolite data has two primary implications: these metabolites, might indicate a conserved metabolic response to stressors and, this data may be used to gauge the relative uniqueness of potential biomarkers. AVAILABILITY AND IMPLEMENTATION: METLIN can be accessed by logging on to: https://metlin.scripps.edu CONTACT: siuzdak@scripps.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metaboloma , Metabolómica , Biomarcadores/metabolismo , Bases de Datos Factuales , Humanos , Espectrometría de Masas
6.
Microcirculation ; 22(3): 204-218, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25705966

RESUMEN

We review the organizational principles of the cortical vasculature and the underlying patterns of blood flow under normal conditions and in response to occlusion of single vessels. The cortex is sourced by a two-dimensional network of pial arterioles that feeds a three-dimensional network of subsurface microvessels in close proximity to neurons and glia. Blood flow within the surface and subsurface networks is largely insensitive to occlusion of a single vessel within either network. However, the penetrating arterioles that connect the pial network to the subsurface network are bottlenecks to flow; occlusion of even a single penetrating arteriole results in the death of a 500 µm diameter cylinder of cortical tissue despite the potential for collateral flow through microvessels. This pattern of flow is consistent with that calculated from a full reconstruction of the angioarchitecture. Conceptually, collateral flow is insufficient to compensate for the occlusion of a penetrating arteriole because penetrating venules act as shunts of blood that flows through collaterals. Future directions that stem from the analysis of the angioarchitecture concern cellular-level issues, in particular the regulation of blood flow within the subsurface microvascular network, and system-level issues, in particular the role of penetrating arteriole occlusions in human cognitive impairment.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Circulación Cerebrovascular , Microcirculación , Animales , Arteriolas/metabolismo , Arteriolas/patología , Arteriolas/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Humanos , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología
7.
Sci Rep ; 4: 3847, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24457949

RESUMEN

The details of exocytosis, the vital cell process of neuronal communication, are still under debate with two generally accepted scenarios. The first mode of release involves secretory vesicles distending into the cell membrane to release the complete vesicle contents. The second involves partial release of the vesicle content through an intermittent fusion pore, or an opened or partially distended fusion pore. Here we show that both full and partial release can be mimicked with a single large-scale cell model for exocytosis composed of material from blebbing cell plasma membrane. The apparent switching mechanism for determining the mode of release is demonstrated to be related to membrane tension that can be differentially induced during artificial exocytosis. These results suggest that the partial distension mode might correspond to an extended kiss-and-run mechanism of release from secretory cells, which has been proposed as a major pathway of exocytosis in neurons and neuroendocrine cells.


Asunto(s)
Células Artificiales/metabolismo , Membrana Celular/metabolismo , Exocitosis/fisiología , Vesículas Secretoras/metabolismo , Animales , Fusión de Membrana/fisiología , Células PC12 , Ratas
8.
PLoS One ; 9(1): e81293, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24392077

RESUMEN

Nature routinely carries out small-scale chemistry within lipid bound cells and organelles. Liposome-lipid nanotube networks are being developed by many researchers in attempt to imitate these membrane enclosed environments, with the goal to perform small-scale chemical studies. These systems are well characterized in terms of the diameter of the giant unilamellar vesicles they are constructed from and the length of the nanotubes connecting them. Here we evaluate two methods based on intrinsic curvature for adjusting the diameter of the nanotube, an aspect of the network that has not previously been controllable. This was done by altering the lipid composition of the network membrane with two different approaches. In the first, the composition of the membrane was altered via lipid incubation of exogenous lipids; either with the addition of the low intrinsic curvature lipid soy phosphatidylcholine (soy-PC) or the high intrinsic curvature lipid soy phosphatidylethanolamine (soy-PE). In the second approach, exogenous lipids were added to the total lipid composition during liposome formation. Here we show that for both lipid augmentation methods, we observed a decrease in nanotube diameter following soy-PE additions but no significant change in size following the addition of soy-PC. Our results demonstrate that the effect of soy-PE on nanotube diameter is independent of the method of addition and suggests that high curvature soy-PE molecules facilitate tube membrane curvature.


Asunto(s)
Lípidos/química , Nanotubos/química , Liposomas/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Glycine max/química
9.
Anal Chem ; 85(13): 6421-8, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23706095

RESUMEN

During exocytosis, small quantities of neurotransmitters are released by the cell. These neurotransmitters can be detected quantitatively using electrochemical methods, principally with disk carbon fiber microelectrode amperometry. An exocytotic event then results in the recording of a current peak whose characteristic features are directly related to the mechanisms of exocytosis. We have compared two exocytotic peak populations obtained from PC12 cells with a disk carbon fiber microelectrode and with a pyrolyzed carbon ring microelectrode array, with a 500 nm ring thickness. The specific shape of the ring electrode allows for precise analysis of diffusion processes at the vicinity of the cell membrane. Peaks obtained with a ring microelectrode array show a distorted average shape, owing to increased diffusion pathways. This result has been used to evaluate the diffusion coefficient of dopamine at the surface of a cell, which is up to an order of magnitude smaller than that measured in free buffer. The lower rate of diffusion is discussed as resulting from interactions with the glycocalyx.


Asunto(s)
Carbono/química , Membrana Celular/química , Dopamina/análisis , Técnicas Electroquímicas/métodos , Animales , Fibra de Carbono , Membrana Celular/metabolismo , Difusión , Dopamina/metabolismo , Técnicas Electroquímicas/instrumentación , Microelectrodos , Células PC12 , Distribución Aleatoria , Ratas , Propiedades de Superficie
10.
Sci Rep ; 2: 907, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23205269

RESUMEN

The basis for communication between nerve cells lies in the process of exocytosis, the fusion of neurotransmitter filled vesicles with the cell membrane resulting in release of the signaling molecules. Even though much is known about this process, the extent that the vesicles are emptied upon fusion is a topic that is being debated. We have analyzed amperometric peaks corresponding to release at PC12 cells and find stable plateau currents during the decay of peaks, indicating closing of the vesicle after incomplete release of its content. Using lipid incubations to alter the amount of transmitter released we were able to estimate the initial vesicular content, and from that, the fraction of release. We propose a process for most exocytosis events where the vesicle partially opens to release transmitter and then closes directly again, leaving the possibility for regulation of transmission within events.


Asunto(s)
Exocitosis/fisiología , Fusión de Membrana/efectos de los fármacos , Neurotransmisores/metabolismo , Vesículas Secretoras/metabolismo , Transmisión Sináptica/efectos de los fármacos , Potenciales de Acción , Animales , Comunicación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Exocitosis/efectos de los fármacos , Cinética , Liposomas/química , Liposomas/farmacología , Microelectrodos , Células PC12 , Fosfolípidos/química , Fosfolípidos/farmacología , Ratas , Vesículas Secretoras/efectos de los fármacos , Potenciales Sinápticos/efectos de los fármacos
11.
Anal Chem ; 83(2): 571-7, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21190375

RESUMEN

Carbon-fiber-microelectrode arrays (MEAs) have been utilized to electrochemically image neurochemical secretion from individual pheochromocytoma (PC12) cells. Dopamine release events were electrochemically monitored from seven different locations on single PC12 cells using alternately constant-potential amperometry and fast-scan cyclic voltammetry (FSCV). Cyclic voltammetry, when compared to amperometry, can provide excellent chemical resolution; however, spatial and temporal resolution are both compromised. The spatial and temporal resolution of these two methods have been quantitatively compared and the differences explained using models of molecular diffusion at the nanogap between the electrode and the cell. A numerical simulation of the molecular flux reveals that the diffusion of dopamine molecules and electrochemical reactions both play important roles in the temporal resolution of electrochemical imaging. The simulation also reveals that the diffusion and electrode potential cause the differences in signal crosstalk between electrodes when comparing amperometry and FSCV.


Asunto(s)
Dopamina/metabolismo , Técnicas Electroquímicas/métodos , Animales , Carbono/química , Fibra de Carbono , Microelectrodos , Células PC12 , Ratas , Análisis de la Célula Individual
12.
Cell Mol Neurobiol ; 30(8): 1235-42, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21088886

RESUMEN

Fast neuromodulatory effects of 17-ß-estradiol (E2) on cytosolic calcium concentration ([Ca(2+)](i)) have been reported in many cell types, but little is known about its direct effects on vesicular neurotransmitter secretion (exocytosis). We examined the effects of E2 on depolarization-evoked [Ca(2+)](i) in PC12 cells using fluorescence measurements. Imaging of [Ca(2+)](i) with FURA-2 revealed that depolarization-evoked calcium entry is inhibited after exposure to 10 nM and 10 µM E2. Calcium entry after exposure to 50 µM E2 decreases slightly, but insignificantly. To relate E2-induced changes in [Ca(2+)](i) to functional effects, we measured exocytosis using amperometry. It was observed that E2 in some cells elicits exocytosis upon exposure. In addition, E2 inhibits depolarization-evoked exocytosis with a complex concentration dependence, with inhibition at both physiological and pharmacological concentrations. This rapid inhibition amounts to 45% at a near physiological level (10 nM E2), and 50% at a possible pharmacological concentration of 50 µM. A small percentage (22%) of cells show exocytosis during E2 exposure ("Estrogen stimulated"), thus vesicle depletion could possibly account (at least partly) for the E2-induced inhibition of depolarization-evoked exocytosis. In cells that do not exhibit E2-stimulated release ("Estrogen quiet"), the E2-induced inhibition of exocytosis is abolished by a treatment that eliminates the contribution of N-type voltage-gated calcium channels (VGCCs) to exocytosis. Overall, the data suggest that E2 can act on N-type VGCCs to affect secretion of neurotransmitters. This provides an additional mechanism for the modulation of neuronal communication and plasticity by steroids.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Estradiol/farmacología , Exocitosis/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Animales , Calcio/metabolismo , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Células PC12 , Ratas
13.
Chemphyschem ; 11(13): 2756-63, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20737529

RESUMEN

Unraveling the mechanistic details of neurotransmitter exocytosis is arguably among the most important molecular problems in neuroscience today. Investigations at single cells, particularly with electrochemical methods, have given unique chemical and biological insight into this process at the fundamental level. The rapid response time (submillisecond) of microelectrodes makes them well suited for monitoring the dynamic process of exocytosis. We review here recent developments in electrochemical techniques to spatially and simultaneously detect exocytosis across a single cell and to measure the transmitter content of single vesicles removed from cells. The former method is used to demonstrate dynamic heterogeneity in release across a cell, and in the latter work comparison is made between vesicle content and release to conclude that only a fraction of the transmitter is released during full exocytosis.


Asunto(s)
Exocitosis , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Técnicas Electroquímicas , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...