Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
bioRxiv ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38293110

RESUMEN

Copper (Cu) is an essential trace element required for mitochondrial respiration. Late-stage clear cell renal cell carcinoma (ccRCC) accumulates Cu and allocates it to mitochondrial cytochrome c oxidase. We show that Cu drives coordinated metabolic remodeling of bioenergy, biosynthesis and redox homeostasis, promoting tumor growth and progression of ccRCC. Specifically, Cu induces TCA cycle-dependent oxidation of glucose and its utilization for glutathione biosynthesis to protect against H 2 O 2 generated during mitochondrial respiration, therefore coordinating bioenergy production with redox protection. scRNA-seq determined that ccRCC progression involves increased expression of subunits of respiratory complexes, genes in glutathione and Cu metabolism, and NRF2 targets, alongside a decrease in HIF activity, a hallmark of ccRCC. Spatial transcriptomics identified that proliferating cancer cells are embedded in clusters of cells with oxidative metabolism supporting effects of metabolic states on ccRCC progression. Our work establishes novel vulnerabilities with potential for therapeutic interventions in ccRCC. Accumulation of copper is associated with progression and relapse of ccRCC and drives tumor growth.Cu accumulation and allocation to cytochrome c oxidase (CuCOX) remodels metabolism coupling energy production and nucleotide biosynthesis with maintenance of redox homeostasis.Cu induces oxidative phosphorylation via alterations in the mitochondrial proteome and lipidome necessary for the formation of the respiratory supercomplexes. Cu stimulates glutathione biosynthesis and glutathione derived specifically from glucose is necessary for survival of Cu Hi cells. Biosynthesis of glucose-derived glutathione requires activity of glutamyl pyruvate transaminase 2, entry of glucose-derived pyruvate to mitochondria via alanine, and the glutamate exporter, SLC25A22. Glutathione derived from glucose maintains redox homeostasis in Cu-treated cells, reducing Cu-H 2 O 2 Fenton-like reaction mediated cell death. Progression of human ccRCC is associated with gene expression signature characterized by induction of ETC/OxPhos/GSH/Cu-related genes and decrease in HIF/glycolytic genes in subpopulations of cancer cells. Enhanced, concordant expression of genes related to ETC/OxPhos, GSH, and Cu characterizes metabolically active subpopulations of ccRCC cells in regions adjacent to proliferative subpopulations of ccRCC cells, implicating oxidative metabolism in supporting tumor growth.

2.
J Biol Chem ; 299(5): 104663, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37003503

RESUMEN

Microtubule-associated protein 1 light chain 3 gamma (MAP1LC3C or LC3C) is a member of the microtubule-associated family of proteins that are essential in the formation of autophagosomes and lysosomal degradation of cargo. LC3C has tumor-suppressing activity, and its expression is dependent on kidney cancer tumor suppressors, such as von Hippel-Lindau protein and folliculin. Recently, we demonstrated that LC3C autophagy is regulated by noncanonical upstream regulatory complexes and targets for degradation postdivision midbody rings associated with cancer cell stemness. Here, we show that loss of LC3C leads to peripheral positioning of the lysosomes and lysosomal exocytosis (LE). This process is independent of the autophagic activity of LC3C. Analysis of isogenic cells with low and high LE shows substantial transcriptomic reprogramming with altered expression of zinc (Zn)-related genes and activity of polycomb repressor complex 2, accompanied by a robust decrease in intracellular Zn. In addition, metabolomic analysis revealed alterations in amino acid steady-state levels. Cells with augmented LE show increased tumor initiation properties and form aggressive tumors in xenograft models. Immunocytochemistry identified high levels of lysosomal-associated membrane protein 1 on the plasma membrane of cancer cells in human clear cell renal cell carcinoma and reduced levels of Zn, suggesting that LE occurs in clear cell renal cell carcinoma, potentially contributing to the loss of Zn. These data indicate that the reprogramming of lysosomal localization and Zn metabolism with implication for epigenetic remodeling in a subpopulation of tumor-propagating cancer cells is an important aspect of tumor-suppressing activity of LC3C.


Asunto(s)
Carcinoma de Células Renales , Exocitosis , Neoplasias Renales , Lisosomas , Proteínas Asociadas a Microtúbulos , Zinc , Animales , Humanos , Autofagia , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Zinc/metabolismo , Complejo Represivo Polycomb 2 , Epigénesis Genética
5.
Nat Commun ; 13(1): 4678, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945222

RESUMEN

There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here we present iLINCS ( http://ilincs.org ), an integrative web-based platform for analysis of omics data and signatures of cellular perturbations. The platform facilitates mining and re-analysis of the large collection of omics datasets (>34,000), pre-computed signatures (>200,000), and their connections, as well as the analysis of user-submitted omics signatures of diseases and cellular perturbations. iLINCS analysis workflows integrate vast omics data resources and a range of analytics and interactive visualization tools into a comprehensive platform for analysis of omics signatures. iLINCS user-friendly interfaces enable execution of sophisticated analyses of omics signatures, mechanism of action analysis, and signature-driven drug repositioning. We illustrate the utility of iLINCS with three use cases involving analysis of cancer proteogenomic signatures, COVID 19 transcriptomic signatures and mTOR signaling.


Asunto(s)
COVID-19 , Neoplasias , COVID-19/genética , Biología Computacional , Humanos , Neoplasias/genética , Programas Informáticos , Transcriptoma , Flujo de Trabajo
6.
J Neural Transm (Vienna) ; 129(7): 913-924, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35501530

RESUMEN

Lithium's inhibitory effect on enzymes involved in sulfation process, such as inhibition of 3'(2')-phosphoadenosine 5'-phosphate (PAP) phosphatase, is a possible mechanism of its therapeutic effect for bipolar disorder (BD). 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is translocated from cytosol to Golgi lumen by PAPS transporter 1 (PAPST1/SLC35B2), where it acts as a sulfa donor. Since SLC35B2 was previously recognized as a molecule that facilitates the release of D-serine, a co-agonist of N-methyl-D-aspartate type glutamate receptor, altered function of SLC35B2 might be associated with the pathophysiology of BD and schizophrenia (SCZ). We performed genetic association analyses of the SLC35B2 gene using Japanese cohorts with 366 BD cases and 370 controls and 2012 SCZ cases and 2170 controls. We then investigated expression of SLC35B2 mRNA in postmortem brains by QPCR using a Caucasian cohort with 33 BD and 34 SCZ cases and 34 controls and by in situ hybridization using a Caucasian cohort with 37 SCZ and 29 controls. We found significant associations between three SNPs (rs575034, rs1875324, and rs3832441) and BD, and significantly reduced SLC35B2 mRNA expression in postmortem dorsolateral prefrontal cortex (DLPFC) of BD. Moreover, we observed normalized SLC35B2 mRNA expression in BD subgroups who were medicated with lithium. While there was a significant association of SLC35B2 with SCZ (SNP rs2233437), its expression was not changed in SCZ. These findings indicate that SLC35B2 might be differentially involved in the pathophysiology of BD and SCZ by influencing the sulfation process and/or glutamate system in the central nervous system.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Humanos , Litio/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transportadores de Sulfato/genética
7.
Curr Opin Pharmacol ; 62: 117-129, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34968947

RESUMEN

Biological regulatory networks are dynamic, intertwined, and complex systems making them challenging to study. While quantitative measurements of transcripts and proteins are key to investigate the state of a biological system, they do not inform the "active" state of regulatory networks. In consideration of that fact, "functional" proteomics assessments are needed to decipher active regulatory processes. Phosphorylation, a key post-translation modification, is a reversible regulatory mechanism that controls the functional state of proteins. Recent advancements of high-throughput protein kinase activity profiling platforms allow for a broad assessment of protein kinase networks in complex biological systems. In conjunction with sophisticated computational modeling techniques, these profiling platforms provide datasets that inform the active state of regulatory systems in disease models and highlight potential drug targets. Taken together, system-wide profiling of protein kinase activity has become a critical component of modern molecular biology research and presents a promising avenue for drug discovery.


Asunto(s)
Proteínas Quinasas , Proteómica , Simulación por Computador , Descubrimiento de Drogas , Humanos , Proteínas Quinasas/metabolismo , Proteínas , Proteómica/métodos
8.
Mol Psychiatry ; 26(12): 7699-7708, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34272489

RESUMEN

While the pathophysiology of schizophrenia has been extensively investigated using homogenized postmortem brain samples, few studies have examined changes in brain samples with techniques that may attribute perturbations to specific cell types. To fill this gap, we performed microarray assays on mRNA isolated from anterior cingulate cortex (ACC) superficial and deep pyramidal neurons from 12 schizophrenia and 12 control subjects using laser-capture microdissection. Among all the annotated genes, we identified 134 significantly increased and 130 decreased genes in superficial pyramidal neurons, while 93 significantly increased and 101 decreased genes were found in deep pyramidal neurons, in schizophrenia compared to control subjects. In these differentially expressed genes, we detected lamina-specific changes of 55 and 31 genes in superficial and deep neurons in schizophrenia, respectively. Gene set enrichment analysis (GSEA) was applied to the entire pre-ranked differential expression gene lists to gain a complete pathway analysis throughout all annotated genes. Our analysis revealed overrepresented groups of gene sets in schizophrenia, particularly in immunity and synapse-related pathways, suggesting the disruption of these pathways plays an important role in schizophrenia. We also detected other pathways previously demonstrated in schizophrenia pathophysiology, including cytokine and chemotaxis, postsynaptic signaling, and glutamatergic synapses. In addition, we observed several novel pathways, including ubiquitin-independent protein catabolic process. Considering the effects of antipsychotic treatment on gene expression, we applied a novel bioinformatics approach to compare our differential expression gene profiles with 51 antipsychotic treatment datasets, demonstrating that our results were not influenced by antipsychotic treatment. Taken together, we found pyramidal neuron-specific changes in neuronal immunity, synaptic dysfunction, and olfactory dysregulation in schizophrenia, providing new insights for the cell-subtype specific pathophysiology of chronic schizophrenia.


Asunto(s)
Antipsicóticos , Esquizofrenia , Antipsicóticos/metabolismo , Humanos , Neuronas/metabolismo , Células Piramidales/metabolismo , ARN Mensajero/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
9.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33988680

RESUMEN

LC3s are canonical proteins necessary for the formation of autophagosomes. We have previously established that two paralogs, LC3B and LC3C, have opposite activities in renal cancer, with LC3B playing an oncogenic role and LC3C a tumor-suppressing role. LC3C is an evolutionary late gene present only in higher primates and humans. Its most distinct feature is a C-terminal 20-amino acid peptide cleaved in the process of glycine 126 lipidation. Here, we investigated mechanisms of LC3C-selective autophagy. LC3C autophagy requires noncanonical upstream regulatory complexes that include ULK3, UVRAG, RUBCN, PIK3C2A, and a member of ESCRT, TSG101. We established that postdivision midbody rings (PDMBs) implicated in cancer stem-cell regulation are direct targets of LC3C autophagy. LC3C C-terminal peptide is necessary and sufficient to mediate LC3C-dependent selective degradation of PDMBs. This work establishes a new noncanonical human-specific selective autophagic program relevant to cancer stem cells.


Asunto(s)
Autofagosomas/genética , Autofagia/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Péptidos/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , Factores de Transcripción , Proteínas Supresoras de Tumor/genética
10.
Mol Cell Oncol ; 8(2): 1859917, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33860076

RESUMEN

Tobacco smoking (TS) results in reprogramming of major metabolic pathways, including glycolysis, the citric acid (TCA) cycle, oxidative phosphorylation, and metabolism of aspartate, glutamate and glutamine in clear cell renal cell carcinoma (ccRCC). TS alters the distribution and activities of cadmium, arsenic and copper in a manner mechanistically supporting metabolic remodeling. Alterations in metabolism and metal distribution identify new actionable targets for treatment of ccRCC.

11.
Genes (Basel) ; 12(3)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803184

RESUMEN

The promise of personalized medicine is a therapeutic advance where tumor signatures obtained from different omics platforms, such as genomics, transcriptomics, proteomics, and metabolomics, in addition to environmental factors including metals and metalloids, are used to guide the treatments. Clear cell renal carcinoma (ccRCC), the most common type of kidney cancer, can be sporadic (frequently) or genetic (rare), both characterized by loss of the von Hippel-Lindau (VHL) gene that controls hypoxia inducible factors. Recently, several genomic subtypes were identified with different prognoses. Transcriptomics, proteomics, metabolomics and metallomic data converge on altered metabolism as the principal feature of the disease. However, in view of multiple biochemical alterations and high level of tumor heterogeneity, identification of clearly defined subtypes is necessary for further improvement of treatments. In the future, single-cell combined multi-omics approaches will be the next generation of analyses gaining deeper insights into ccRCC progression and allowing for design of specific signatures, with better prognostic/predictive clinical applications.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Animales , Carcinoma de Células Renales/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Renales/genética , Medicina de Precisión , Pronóstico , Transcriptoma/genética
12.
Sci Rep ; 11(1): 4495, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627767

RESUMEN

The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. Identification of effective therapeutics is a crucial tool to treat those infected with SARS-CoV-2 and limit the spread of this novel disease globally. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and publicly available SARS-CoV-2 infected cell lines to identify novel therapeutics. We identified a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID-19, the remaining 12 have antiviral properties and 6 have antiviral efficacy against coronaviruses specifically, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug findings are discordant with (i.e., reverse) SARS-CoV-2 transcriptome signatures generated in vitro, and a subset are also identified in transcriptome signatures generated from COVID-19 patient samples, like the MEK inhibitor selumetinib. Overall, our findings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID-19 and identify promising novel targets that are worthy of further investigation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , Antivirales/farmacología , COVID-19/genética , COVID-19/metabolismo , Biología Computacional/métodos , Bases de Datos Factuales , Descubrimiento de Drogas/métodos , Humanos , Pandemias , Preparaciones Farmacéuticas , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transcriptoma/efectos de los fármacos
13.
Indoor Air ; 31(2): 357-368, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32969526

RESUMEN

Respiratory microbiome is an understudied area of research compared to other microbiomes of the human body. The respiratory tract is exposed to an array of environmental pollutants, including microbes. Yet, we know very little about the relationship between environmental and respiratory microbiome. The primary aim of our study was to compare the mycobiomes and bacteriomes between three sample types from the same participants, including home dust, saliva, and sputum. Samples were collected from 40 adolescents in a longitudinal cohort. We analyzed the samples using 16s bacterial rDNA and ITS fungal rDNA gene sequencing, as well as quantitative PCR with universal fungal and bacterial primers. Results showed that home dust had the greatest alpha diversity between the three sample types for both bacteria and fungi. Dust had the highest total fungal load and the lowest total bacterial load. Sputum had greater bacterial diversity than saliva, but saliva had greater fungal diversity than sputum. The distribution of major bacterial phyla differed between all sample types. However, the distribution of major fungal classes differed only between sputum and saliva. Future research should examine the biological significance of the taxa found in each sample type based on microbial ecology and associations with health effects.


Asunto(s)
Contaminación del Aire Interior , Monitoreo del Ambiente , Microbiota , Micobioma , Adolescente , Microbiología del Aire , Bacterias , Estudios de Cohortes , ADN Bacteriano , ADN de Hongos , Polvo/análisis , Hongos , Vivienda , Humanos , ARN Ribosómico 16S , Sistema Respiratorio , Saliva/microbiología
14.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32970633

RESUMEN

BACKGROUNDClear cell renal cell carcinoma (ccRCC) is the most common histologically defined renal cancer. However, it is not a uniform disease and includes several genetic subtypes with different prognoses. ccRCC is also characterized by distinctive metabolic reprogramming. Tobacco smoking (TS) is an established risk factor for ccRCC, with unknown effects on tumor pathobiology.METHODSWe investigated the landscape of ccRCCs and paired normal kidney tissues using integrated transcriptomic, metabolomic, and metallomic approaches in a cohort of white males who were long-term current smokers (LTS) or were never smokers (NS).RESULTSAll 3 Omics domains consistently identified a distinct metabolic subtype of ccRCCs in LTS, characterized by activation of oxidative phosphorylation (OXPHOS) coupled with reprogramming of the malate-aspartate shuttle and metabolism of aspartate, glutamate, glutamine, and histidine. Cadmium, copper, and inorganic arsenic accumulated in LTS tumors, showing redistribution among intracellular pools, including relocation of copper into the cytochrome c oxidase complex. A gene expression signature based on the LTS metabolic subtype provided prognostic stratification of The Cancer Genome Atlas ccRCC tumors that was independent of genomic alterations.CONCLUSIONThe work identified the TS-related metabolic subtype of ccRCC with vulnerabilities that can be exploited for precision medicine approaches targeting metabolic pathways. The results provided rationale for the development of metabolic biomarkers with diagnostic and prognostic applications using evaluation of OXPHOS status. The metallomic analysis revealed the role of disrupted metal homeostasis in ccRCC, highlighting the importance of studying effects of metals from e-cigarettes and environmental exposures.FUNDINGDepartment of Defense, Veteran Administration, NIH, ACS, and University of Cincinnati Cancer Institute.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Reprogramación Celular , Neoplasias Renales/metabolismo , Fumar Tabaco/efectos adversos , Fumar Tabaco/metabolismo , Carcinoma de Células Renales/patología , Femenino , Humanos , Neoplasias Renales/patología , Masculino , Fumar Tabaco/patología
15.
Vaccines (Basel) ; 8(4)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291616

RESUMEN

The study of immune evasion has gained a well-deserved eminence in cancer research by successfully developing a new class of therapeutics, immune checkpoint inhibitors, such as pembrolizumab and nivolumab, anti-PD-1 antibodies. By aiming at the immune checkpoint blockade (ICB), these new therapeutics have advanced cancer treatment with notable increases in overall survival and tumor remission. However, recent reports reveal that 40-60% of patients fail to benefit from ICB therapy due to acquired resistance or tumor relapse. This resistance may stem from increased expression of co-inhibitory immune checkpoints or alterations in the tumor microenvironment that promotes immune suppression. Because these mechanisms are poorly elucidated, the transcription factors that regulate immune checkpoints, known as "master regulators", have garnered interest. These include AP-1, IRF-1, MYC, and STAT3, which are known to regulate PD/PD-L1 and CTLA-4. Identifying these and other potential master regulators as putative therapeutic targets or biomarkers can be facilitated by mining cancer literature, public datasets, and cancer genomics resources. In this review, we describe recent advances in master regulator identification and characterization of the mechanisms underlying immune checkpoints regulation, and discuss how these master regulators of immune checkpoint molecular expression can be targeted as a form of auxiliary therapeutic strategy to complement traditional immunotherapy.

16.
Res Sq ; 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32702077

RESUMEN

The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. As no vaccine or drugs are currently approved to specifically treat COVID-19, identification of effective therapeutics is crucial to treat the afflicted and limit disease spread. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and signatures of coronavirus-infected cell lines to identify therapeutics with concordant signatures and discordant signatures, respectively. Our findings include three FDA approved drugs that have established antiviral activity, including protein kinase inhibitors, providing a promising new category of candidates for COVID-19 interventions.

17.
Nucleic Acids Res ; 48(W1): W85-W93, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32469073

RESUMEN

Rapid progress in proteomics and large-scale profiling of biological systems at the protein level necessitates the continued development of efficient computational tools for the analysis and interpretation of proteomics data. Here, we present the piNET server that facilitates integrated annotation, analysis and visualization of quantitative proteomics data, with emphasis on PTM networks and integration with the LINCS library of chemical and genetic perturbation signatures in order to provide further mechanistic and functional insights. The primary input for the server consists of a set of peptides or proteins, optionally with PTM sites, and their corresponding abundance values. Several interconnected workflows can be used to generate: (i) interactive graphs and tables providing comprehensive annotation and mapping between peptides and proteins with PTM sites; (ii) high resolution and interactive visualization for enzyme-substrate networks, including kinases and their phospho-peptide targets; (iii) mapping and visualization of LINCS signature connectivity for chemical inhibitors or genetic knockdown of enzymes upstream of their target PTM sites. piNET has been built using a modular Spring-Boot JAVA platform as a fast, versatile and easy to use tool. The Apache Lucene indexing is used for fast mapping of peptides into UniProt entries for the human, mouse and other commonly used model organism proteomes. PTM-centric network analyses combine PhosphoSitePlus, iPTMnet and SIGNOR databases of validated enzyme-substrate relationships, for kinase networks augmented by DeepPhos predictions and sequence-based mapping of PhosphoSitePlus consensus motifs. Concordant LINCS signatures are mapped using iLINCS. For each workflow, a RESTful API counterpart can be used to generate the results programmatically in the json format. The server is available at http://pinet-server.org, and it is free and open to all users without login requirement.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteómica/métodos , Programas Informáticos , Animales , Gráficos por Computador , Enzimas/metabolismo , Humanos , Internet , Ratones , Péptidos/química , Péptidos/metabolismo , Proteínas/química , Proteínas/metabolismo , Flujo de Trabajo
18.
PLoS One ; 15(3): e0229801, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32163428

RESUMEN

We report the synthesis and preliminary characterization of IODVA1, a potent small molecule that is active in xenograft mouse models of Ras-driven lung and breast cancers. In an effort to inhibit oncogenic Ras signaling, we combined in silico screening with inhibition of proliferation and colony formation of Ras-driven cells. NSC124205 fulfilled all criteria. HPLC analysis revealed that NSC124205 was a mixture of at least three compounds, from which IODVA1 was determined to be the active component. IODVA1 decreased 2D and 3D cell proliferation, cell spreading and ruffle and lamellipodia formation through downregulation of Rac activity. IODVA1 significantly impaired xenograft tumor growth of Ras-driven cancer cells with no observable toxicity. Immuno-histochemistry analysis of tumor sections suggests that cell death occurs by increased apoptosis. Our data suggest that IODVA1 targets Rac signaling to induce death of Ras-transformed cells. Therefore, IODVA1 holds promise as an anti-tumor therapeutic agent.


Asunto(s)
Antineoplásicos/farmacología , Bencimidazoles/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas ras/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Bencimidazoles/síntesis química , Bencimidazoles/uso terapéutico , Proliferación Celular/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Células 3T3 NIH , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Mol Omics ; 15(3): 173-188, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31106784

RESUMEN

Protein kinases orchestrate signal transduction pathways involved in central nervous system functions ranging from neurodevelopment to synaptic transmission and plasticity. Abnormalities in kinase-mediated signaling are involved in the pathophysiology of neurological disorders, including neuropsychiatric disorders. Here, we expand on the hypothesis that kinase networks are dysregulated in schizophrenia. We investigated changes in serine/threonine kinase activity in cortical excitatory neurons differentiated from induced pluripotent stem cells (iPSCs) from a schizophrenia patient presenting with a 4 bp mutation in the disrupted in schizophrenia 1 (DISC1) gene and a corresponding control. Using kinome peptide arrays, we demonstrate large scale abnormalities in DISC1 cells, including a global depression of serine/threonine kinase activity, and changes in activity of kinases, including AMP-activated protein kinase (AMPK), extracellular signal-regulated kinases (ERK), and thousand-and-one amino acid (TAO) kinases. Using isogenic cell lines in which the DISC1 mutation is either introduced in the control cell line, or rescued in the schizophrenia cell line, we ascribe most of these changes to a direct effect of the presence of the DISC1 mutation. Investigating the gene expression signatures downstream of the DISC1 kinase network, and mapping them on perturbagen signatures obtained from the Library of Integrated Network-based Cellular Signatures (LINCS) database, allowed us to propose novel drug targets able to reverse the DISC1 kinase dysregulation gene expression signature. Altogether, our findings provide new insight into abnormalities of kinase networks in schizophrenia and suggest possible targets for disease intervention.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Esquizofrenia/metabolismo , Simulación por Computador , Humanos , Modelos Biológicos , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas , Transducción de Señal , Sinapsis/fisiología , Transmisión Sináptica
20.
J Pain ; 20(7): 771-785, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639570

RESUMEN

We have reported child anxiety sensitivity (Child Anxiety Sensitivity Index [CASI]) predicts chronic postsurgical pain (CPSP). Herein, we evaluated DNA methylation profiles to understand the gene-environment interactions underlying CPSP and CASI, to identify shared, enriched, genomic pathways. In 73 prospectively recruited adolescents undergoing spine fusion, preoperative CASI and pain data over 12 months after surgery were collected. DNA from the peripheral blood of evaluable subjects with (n = 16) and without CPSP (n = 40) were analyzed using MethylationEPIC arrays. We identified 637 and 2,445 differentially DNA methylated positions (DMPs) associated with CPSP and CASI, respectively (P ≤ .05). Ingenuity pathway analysis of 39 genes with DMPs for both CPSP and CASI revealed enrichment of several canonical pathways, including GABA receptor (P = .00016 for CPSP; P =.0008 for CASI) and dopamine-DARPP32 feedback in cyclic adenosine monophosphate (P = .004 for CPSP and P =.00003 for CASI) signaling. Gene-gene interaction network enrichment analysis revealed participation of pathways in cell signaling, molecular transport, metabolism, and neurologic diseases (P < 10-8). Bioinformatic approaches to identify histone marks and transcription factor (TF) binding events underlying DMPs, showed their location in active regulatory regions in pain pathway relevant brain cells. Using Enrichr/Pinet enrichment and Library of Integrated Network-Based Cellular Signatures knockdown signatures, we identified TFs regulating genes with DMPs in association with CPSP and CASI. In conclusion, we identified epigenetically enriched pathways associated with CPSP and anxiety sensitivity in children undergoing surgery. Our findings support GABA hypofunction and the roles of the dopamine-DARPP32 pathway in emotion/reward and pain. This pilot study provides new epigenetic insights into the pathophysiology of CPSP and a basis for future studies in biomarker development and targetable interventions. PERSPECTIVE: Differential DNA methylation in regulatory genomic regions enriching shared neural pathways were associated with CPSP and CASI in adolescents undergoing spine surgery. Our findings support GABA hypofunction and the roles of the dopamine-DARPP32 pathway in emotion/reward contributing to behavioral maintenance of pain 10 to 12 months after surgery.


Asunto(s)
Ansiedad , Dolor Crónico/fisiopatología , Metilación de ADN/genética , Interacción Gen-Ambiente , Dolor Postoperatorio/fisiopatología , Adolescente , Ansiedad/genética , Niño , Dolor Crónico/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Dolor Postoperatorio/etiología , Dolor Postoperatorio/genética , Proyectos Piloto , Estudios Prospectivos , Escoliosis/cirugía , Fusión Vertebral/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...