Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nat Cell Biol ; 26(4): 645-659, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589531

RESUMEN

The cellular lipidome comprises thousands of unique lipid species. Here, using mass spectrometry-based targeted lipidomics, we characterize the lipid landscape of human and mouse immune cells ( www.cellularlipidatlas.com ). Using this resource, we show that immune cells have unique lipidomic signatures and that processes such as activation, maturation and development impact immune cell lipid composition. To demonstrate the potential of this resource to provide insights into immune cell biology, we determine how a cell-specific lipid trait-differences in the abundance of polyunsaturated fatty acid-containing glycerophospholipids (PUFA-PLs)-influences immune cell biology. First, we show that differences in PUFA-PL content underpin the differential susceptibility of immune cells to ferroptosis. Second, we show that low PUFA-PL content promotes resistance to ferroptosis in activated neutrophils. In summary, we show that the lipid landscape is a defining feature of immune cell identity and that cell-specific lipid phenotypes underpin aspects of immune cell physiology.


Asunto(s)
Ferroptosis , Humanos , Animales , Ratones , Ácidos Grasos Insaturados
2.
Diabetes Obes Metab ; 26(5): 1731-1745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351663

RESUMEN

AIM: Acyl-coenzyme A dehydrogenase family member 10 (ACAD10) is a mitochondrial protein purported to be involved in the fatty acid oxidation pathway. Metformin is the most prescribed therapy for type 2 diabetes; however, its precise mechanisms of action(s) are still being uncovered. Upregulation of ACAD10 is a requirement for metformin's ability to inhibit growth in cancer cells and extend lifespan in Caenorhabditis elegans. However, it is unknown whether ACAD10 plays a role in metformin's metabolic actions. MATERIALS AND METHODS: We assessed the role for ACAD10 on whole-body metabolism and metformin action by generating ACAD10KO mice on a C57BL/6J background via CRISPR-Cas9 technology. In-depth metabolic phenotyping was conducted in both sexes on a normal chow and high fat-high sucrose diet. RESULTS: Compared with wildtype mice, we detected no difference in body composition, energy expenditure or glucose tolerance in male or female ACAD10KO mice, on a chow diet or high-fat, high-sucrose diet (p ≥ .05). Hepatic mitochondrial function and insulin signalling was not different between genotypes under basal or insulin-stimulated conditions (p ≥ .05). Glucose excursions following acute administration of metformin before a glucose tolerance test were not different between genotypes nor was body composition or energy expenditure altered after 4 weeks of daily metformin treatment (p ≥ .05). Despite the lack of a metabolic phenotype, liver lipidomic analysis suggests ACAD10 depletion influences the abundance of specific ceramide species containing very long chain fatty acids, while metformin treatment altered clusters of cholesterol ester, plasmalogen, phosphatidylcholine and ceramide species. CONCLUSIONS: Loss of ACAD10 does not alter whole-body metabolism or impact the acute or chronic metabolic actions of metformin in this model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Masculino , Femenino , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Metformina/farmacología , Glucosa/metabolismo , Insulina , Ceramidas , Sacarosa , Dieta Alta en Grasa/efectos adversos
3.
J Lipid Res ; 65(2): 100494, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38160756

RESUMEN

HDL particles vary in lipidome and proteome, which dictate their individual physicochemical properties, metabolism, and biological activities. HDL dysmetabolism in nondiabetic hypertriglyceridemia (HTG) involves subnormal HDL-cholesterol and apoAI levels. Metabolic anomalies may impact the qualitative features of both the HDL lipidome and proteome. Whether particle content of bioactive lipids and proteins may differentiate HDL subclasses (HDL2b, 2a, 3a, 3b, and 3c) in HTG is unknown. Moreover, little is known of the effect of statin treatment on the proteolipidome of hypertriglyceridemic HDL and its subclasses. Nondiabetic, obese, HTG males (n = 12) received pitavastatin calcium (4 mg/day) for 180 days in a single-phase, unblinded study. ApoB-containing lipoproteins were normalized poststatin. Individual proteolipidomes of density-defined HDL subclasses were characterized prestatin and poststatin. At baseline, dense HDL3c was distinguished by marked protein diversity and peak abundance of surface lysophospholipids, amphipathic diacylglycerol and dihydroceramide, and core cholesteryl ester and triacylglycerol, (normalized to mol phosphatidylcholine), whereas light HDL2b showed peak abundance of free cholesterol, sphingomyelin, glycosphingolipids (monohexosylceramide, dihexosylceramide, trihexosylceramide, and anionic GM3), thereby arguing for differential lipid transport and metabolism between subclasses. Poststatin, bioactive lysophospholipid (lysophosphatidylcholine, lysoalkylphosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylinositol) cargo was preferentially depleted in HDL3c. By contrast, baseline lipidomic profiles of ceramide, dihydroceramide and related glycosphingolipids, and GM3/phosphatidylcholine were maintained across particle subclasses. All subclasses were depleted in triacylglycerol and diacylglycerol/phosphatidylcholine. The abundance of apolipoproteins CI, CII, CIV, and M diminished in the HDL proteome. Statin treatment principally impacts metabolic remodeling of the abnormal lipidome of HDL particle subclasses in nondiabetic HTG, with lesser effects on the proteome.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hiperlipidemias , Hipertrigliceridemia , Quinolinas , Masculino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Proteoma , Diglicéridos , Lipidómica , Ceramidas , Colesterol/metabolismo , Hipertrigliceridemia/tratamiento farmacológico , HDL-Colesterol , Triglicéridos , Fosfatidilcolinas
4.
Nat Commun ; 14(1): 6280, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805498

RESUMEN

Obesity is a risk factor for type 2 diabetes and cardiovascular disease. However, a substantial proportion of patients with these conditions have a seemingly normal body mass index (BMI). Conversely, not all obese individuals present with metabolic disorders giving rise to the concept of "metabolically healthy obese". We use lipidomic-based models for BMI to calculate a metabolic BMI score (mBMI) as a measure of metabolic dysregulation associated with obesity. Using the difference between mBMI and BMI (mBMIΔ), we identify individuals with a similar BMI but differing in their metabolic health and disease risk profiles. Exercise and diet associate with mBMIΔ suggesting the ability to modify mBMI with lifestyle intervention. Our findings show that, the mBMI score captures information on metabolic dysregulation that is independent of the measured BMI and so provides an opportunity to assess metabolic health to identify "at risk" individuals for targeted intervention and monitoring.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Índice de Masa Corporal , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/metabolismo , Factores de Riesgo , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/complicaciones , Síndrome Metabólico/epidemiología , Síndrome Metabólico/complicaciones
5.
Sci Adv ; 9(37): eadh0831, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703359

RESUMEN

The incidence of hepatocellular carcinoma (HCC) is rapidly rising largely because of increased obesity leading to nonalcoholic steatohepatitis (NASH), a known HCC risk factor. There are no approved treatments to treat NASH. Here, we first used single-nucleus RNA sequencing to characterize a mouse model that mimics human NASH-driven HCC, the MUP-uPA mouse fed a high-fat diet. Activation of endoplasmic reticulum (ER) stress and inflammation was observed in a subset of hepatocytes that was enriched in mice that progress to HCC. We next treated MUP-uPA mice with the ER stress inhibitor BGP-15 and soluble gp130Fc, a drug that blocks inflammation by preventing interleukin-6 trans-signaling. Both drugs have progressed to phase 2/3 human clinical trials for other indications. We show that this combined therapy reversed NASH and reduced NASH-driven HCC. Our data suggest that these drugs could provide a potential therapy for NASH progression to HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/prevención & control , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/prevención & control , Hepatocitos , Inflamación/tratamiento farmacológico
6.
Clin Transl Immunology ; 12(4): e1446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091327

RESUMEN

Objectives: The leading cause of mortality in patients with rheumatoid arthritis is atherosclerotic cardiovascular disease (CVD). We have shown that murine arthritis impairs atherosclerotic lesion regression, because of cellular cholesterol efflux defects in haematopoietic stem and progenitor cells (HSPCs), causing monocytosis and impaired atherosclerotic regression. Therefore, we hypothesised that improving cholesterol efflux using a Liver X Receptor (LXR) agonist would improve cholesterol efflux and improve atherosclerotic lesion regression in arthritis. Methods: Ldlr -/- mice were fed a western-type diet for 14 weeks to initiate atherogenesis, then switched to a chow diet to induce lesion regression and divided into three groups; (1) control, (2) K/BxN serum transfer inflammatory arthritis (K/BxN) or (3) K/BxN arthritis and LXR agonist T0901317 daily for 2 weeks. Results: LXR activation during murine inflammatory arthritis completely restored atherosclerotic lesion regression in arthritic mice, evidenced by reduced lesion size, macrophage abundance and lipid content. Mechanistically, serum from arthritic mice promoted foam cell formation, demonstrated by increased cellular lipid accumulation in macrophages and paralleled by a reduction in mRNA of the cholesterol efflux transporters Abca1, Abcg1 and Apoe. T0901317 reduced lipid loading and increased Abca1 and Abcg1 expression in macrophages exposed to arthritic serum and increased ABCA1 levels in atherosclerotic lesions of arthritic mice. Moreover, arthritic clinical score was also attenuated with T0901317. Conclusion: Taken together, we show that the LXR agonist T0901317 rescues impaired atherosclerotic lesion regression in murine arthritis because of enhanced cholesterol efflux transporter expression and reduced foam cell development in atherosclerotic lesions.

7.
Methods Mol Biol ; 2628: 489-504, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781803

RESUMEN

Mass spectrometry remains one of the gold standard approaches in examining the lipidome in biological samples. Recently, advancements in chromatography and mass spectrometry approaches have enabled broad coverage of the lipidome. However, many limitations still exist, and lipidomic analysis often requires a fine balance between coverage of the lipidome, structural detail, and sample throughput. For biomedical and clinical research using human samples, the diversity and natural variation between different individuals necessitate larger sample numbers to identify significant associations with clinical outcomes and account for potential confounding factors. Here we describe a targeted lipidomics workflow that enables reproducible profiling of thousands of plasma samples in a systematic manner, while maintaining good structural detail and high coverage of the lipidome.


Asunto(s)
Lipidómica , Lípidos , Humanos , Lípidos/química , Espectrometría de Masas/métodos , Flujo de Trabajo
8.
bioRxiv ; 2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36798332

RESUMEN

Lipids contribute to hematopoiesis and membrane properties and dynamics, however, little is known about the role of lipids in megakaryopoiesis. Here, a lipidomic analysis of megakaryocyte progenitors, megakaryocytes, and platelets revealed a unique lipidome progressively enriched in polyunsaturated fatty acid (PUFA)-containing phospholipids. In vitro, inhibition of both exogenous fatty acid functionalization and uptake and de novo lipogenesis impaired megakaryocyte differentiation and proplatelet production. In vivo, mice on a high saturated fatty acid diet had significantly lower platelet counts, which was prevented by eating a PUFA-enriched diet. Fatty acid uptake was largely dependent on CD36, and its deletion in mice resulted in thrombocytopenia. Moreover, patients with a CD36 loss-of-function mutation exhibited thrombocytopenia and increased bleeding. Our results suggest that fatty acid uptake and regulation is essential for megakaryocyte maturation and platelet production, and that changes in dietary fatty acids may be a novel and viable target to modulate platelet counts.

9.
Nat Commun ; 13(1): 3124, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668104

RESUMEN

We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P < 1 × 10-3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria , Enfermedad de la Arteria Coronaria/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Homeostasis , Humanos , Lipidómica , Lípidos , Polimorfismo de Nucleótido Simple
10.
Cancer Metab ; 10(1): 7, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379333

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is accompanied by complex dysregulation of lipids. Increasing evidence suggests that particular lipid species are associated with HCC progression. Here, we aimed to identify lipid biomarkers of HCC associated with the induction of two oncogenes, xmrk, a zebrafish homolog of the human epidermal growth factor receptor (EGFR), and Myc, a regulator of EGFR expression during HCC. METHODS: We induced HCC in transgenic xmrk, Myc, and xmrk/Myc zebrafish models. Liver specimens were histologically analyzed to characterize the HCC stage, Oil-Red-O stained to detect lipids, and liquid chromatography/mass spectrometry analyzed to assign and quantify lipid species. Quantitative real-time polymerase chain reaction was used to measure lipid metabolic gene expression in liver samples. Lipid species data was analyzed using univariate and multivariate logistic modeling to correlate lipid class levels with HCC progression. RESULTS: We found that induction of xmrk, Myc and xmrk/Myc caused different stages of HCC. Lipid deposition and class levels generally increased during tumor progression, but triglyceride levels decreased. Myc appears to control early HCC stage lipid species levels in double transgenics, whereas xmrk may take over this role in later stages. Lipid metabolic gene expression can be regulated by either xmrk, Myc, or both oncogenes. Our computational models showed that variations in total levels of several lipid classes are associated with HCC progression. CONCLUSIONS: These data indicate that xmrk and Myc can temporally regulate lipid species that may serve as effective biomarkers of HCC progression.

11.
BMC Med ; 20(1): 112, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35331214

RESUMEN

BACKGROUND: Both changes in circulating lipids represented by a validated poor prognostic 3-lipid signature (3LS) and somatic tumour genetic aberrations are individually associated with worse clinical outcomes in men with metastatic castration-resistant prostate cancer (mCRPC). A key question is how the lipid environment and the cancer genome are interrelated in order to exploit this therapeutically. We assessed the association between the poor prognostic 3-lipid signature (3LS), somatic genetic aberrations and clinical outcomes in mCRPC. METHODS: We performed plasma lipidomic analysis and cell-free DNA (cfDNA) sequencing on 106 men with mCRPC commencing docetaxel, cabazitaxel, abiraterone or enzalutamide (discovery cohort) and 94 men with mCRPC commencing docetaxel (validation cohort). Differences in lipid levels between men ± somatic genetic aberrations were assessed with t-tests. Associations between the 3LS and genetic aberrations with overall survival (OS) were examined using Kaplan-Meier methods and Cox proportional hazard models. RESULTS: The 3LS was associated with shorter OS in the discovery (hazard ratio [HR] 2.15, 95% confidence interval [CI] 1.4-3.3, p < 0.001) and validation cohorts (HR 2.32, 95% CI 1.59-3.38, p < 0.001). Elevated plasma sphingolipids were associated with AR, TP53, RB1 and PI3K aberrations (p < 0.05). Men with both the 3LS and aberrations in AR, TP53, RB1 or PI3K had shorter OS than men with neither in both cohorts (p ≤ 0.001). The presence of 3LS and/or genetic aberration was independently associated with shorter OS for men with AR, TP53, RB1 and PI3K aberrations (p < 0.02). Furthermore, aggressive-variant prostate cancer (AVPC), defined as 2 or more aberrations in TP53, RB1 and/or PTEN, was associated with elevated sphingolipids. The combination of AVPC and 3LS predicted for a median survival of ~12 months. The relatively small sample size of the cohorts limits clinical applicability and warrants future studies. CONCLUSIONS: Elevated circulating sphingolipids were associated with AR, TP53, RB1, PI3K and AVPC aberrations in mCRPC, and the combination of lipid and genetic abnormalities conferred a worse prognosis. These findings suggest that certain genotypes in mCRPC may benefit from metabolic therapies.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Biomarcadores de Tumor/genética , Docetaxel/uso terapéutico , Femenino , Humanos , Lipidómica , Lípidos , Masculino , Fosfatidilinositol 3-Quinasas/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Esfingolípidos/uso terapéutico
12.
Alzheimers Dement ; 18(11): 2151-2166, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35077012

RESUMEN

INTRODUCTION: The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. METHODS: We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. RESULTS: A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. DISCUSSION: Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Apolipoproteína E2/genética , Australia , Apolipoproteínas E/genética , Genotipo , Estudios de Cohortes , Apolipoproteína E4/genética
13.
Nat Commun ; 12(1): 7056, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862379

RESUMEN

Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings.


Asunto(s)
Adaptación Fisiológica , Metabolismo Energético/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Mitocondrias/metabolismo , Músculo Esquelético/fisiología , Adenosina Trifosfato/biosíntesis , Adolescente , Adulto , Biopsia , Transporte de Electrón/fisiología , Voluntarios Sanos , Humanos , Masculino , Músculo Esquelético/citología , Fosforilación Oxidativa , Proteoma , Calidad de Vida , Adulto Joven
14.
EBioMedicine ; 72: 103625, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34656931

RESUMEN

BACKGROUND: Intrinsic resistance to androgen receptor signalling inhibitors (ARSI) occurs in 20-30% of men with metastatic castration-resistant prostate cancer (mCRPC). Ceramide metabolism may have a role in ARSI resistance. Our study's aim is to investigate the association of the ceramide-sphingosine-1-phosphate (ceramide-S1P) signalling axis with ARSI resistance in mCRPC. METHODS: Lipidomic analysis (∼700 lipids) was performed on plasma collected from 132 men with mCRPC, before commencing enzalutamide or abiraterone. AR gene aberrations in 77 of these men were identified by deep sequencing of circulating tumour DNA. Associations between circulating lipids, radiological progression-free survival (rPFS) and overall survival (OS) were examined by Cox regression. Inhibition of ceramide-S1P signalling with sphingosine kinase (SPHK) inhibitors (PF-543 and ABC294640) on enzalutamide efficacy was investigated with in vitro assays, and transcriptomic and lipidomic analyses of prostate cancer (PC) cell lines (LNCaP, C42B, 22Rv1). FINDINGS: Men with elevated circulating ceramide levels had shorter rPFS (HR=2·3, 95% CI=1·5-3·6, p = 0·0004) and shorter OS (HR=2·3, 95% CI=1·4-36, p = 0·0005). The combined presence of an AR aberration with elevated ceramide levels conferred a worse prognosis than the presence of only one or none of these characteristics (median rPFS time = 3·9 vs 8·3 vs 17·7 months; median OS time = 8·9 vs 19·8 vs 34·4 months). SPHK inhibitors enhanced enzalutamide efficacy in PC cell lines. Transcriptomic and lipidomic analyses indicated that enzalutamide combined with SPHK inhibition enhanced PC cell death by SREBP-induced lipotoxicity. INTERPRETATION: Ceramide-S1P signalling promotes ARSI resistance, which can be reversed with SPHK inhibitors. FUNDING: None.


Asunto(s)
Benzamidas/uso terapéutico , Ceramidas/metabolismo , Lisofosfolípidos/metabolismo , Nitrilos/uso terapéutico , Feniltiohidantoína/uso terapéutico , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Esfingosina/análogos & derivados , Anciano , Anciano de 80 o más Años , Androstenos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , ADN Tumoral Circulante/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Masculino , Supervivencia sin Progresión , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingosina/metabolismo
15.
Cancers (Basel) ; 13(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34638448

RESUMEN

Circulating lipids or cytokines are associated with prognosis in metastatic castration-resistant prostate cancer (mCRPC). This study aimed to understand the interactions between lipid metabolism and immune response in mCRPC by investigating the relationship between the plasma lipidome and cytokines. Plasma samples from two independent cohorts of men with mCRPC (n = 146, 139) having life-prolonging treatments were subjected to lipidomic and cytokine profiling (290, 763 lipids; 40 cytokines). Higher baseline levels of sphingolipids, including ceramides, were consistently associated with shorter overall survival in both cohorts, whereas the associations of cytokines with overall survival were inconsistent. Increasing levels of IL6, IL8, CXCL16, MPIF1, and YKL40 correlated with increasing levels of ceramide in both cohorts. Men with a poor prognostic 3-lipid signature at baseline had a shorter time to radiographic progression (poorer treatment response) if their lipid profile at progression was similar to that at baseline, or their cytokine profile at progression differed to that at baseline. In conclusion, baseline levels of circulating lipids were more consistent as prognostic biomarkers than cytokines. The correlation between circulating ceramides and cytokines suggests the regulation of immune responses by ceramides. The association of treatment response with the change in lipid profiles warrants further research into metabolic interventions.

16.
J Biol Chem ; 297(6): 101341, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695418

RESUMEN

Adipose-tissue-resident macrophages (ATMs) maintain metabolic homeostasis but also contribute to obesity-induced adipose tissue inflammation and metabolic dysfunction. Central to these contrasting effects of ATMs on metabolic homeostasis is the interaction of macrophages with fatty acids. Fatty acid levels are increased within adipose tissue in various pathological and physiological conditions, but appear to initiate inflammatory responses only upon interaction with particular macrophage subsets within obese adipose tissue. The molecular basis underlying these divergent outcomes is likely due to phenotypic differences between ATM subsets, although how macrophage polarization state influences the metabolism of exogenous fatty acids is relatively unknown. Herein, using stable isotope-labeled and nonlabeled fatty acids in combination with mass spectrometry lipidomics, we show marked differences in the utilization of exogenous fatty acids within inflammatory macrophages (M1 macrophages) and macrophages involved in tissue homeostasis (M2 macrophages). Specifically, the accumulation of exogenous fatty acids within triacylglycerols and cholesterol esters is significantly higher in M1 macrophages, while there is an increased enrichment of exogenous fatty acids within glycerophospholipids, ether lipids, and sphingolipids in M2 macrophages. Finally, we show that functionally distinct ATM populations in vivo have distinct lipid compositions. Collectively, this study identifies new aspects of the metabolic reprogramming that occur in distinct macrophage polarization states. The channeling of exogenous fatty acids into particular lipid synthetic pathways may contribute to the sensitivity/resistance of macrophage subsets to the inflammatory effects of increased environmental fatty acid levels.


Asunto(s)
Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Macrófagos/metabolismo , Animales , Células Cultivadas , Inflamación/metabolismo , Activación de Macrófagos , Macrófagos/citología , Masculino , Ratones Endogámicos C57BL
17.
Am J Physiol Endocrinol Metab ; 321(6): E782-E794, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34693756

RESUMEN

Exercise is a treatment in rheumatoid arthritis, but participation in moderate-to-vigorous exercise is challenging for some patients. Light-intensity breaks in sitting could be a promising alternative. We compared the acute effects of active breaks in sitting with those of moderate-to-vigorous exercise on cardiometabolic risk markers in patients with rheumatoid arthritis. In a crossover fashion, 15 women with rheumatoid arthritis underwent three 8-h experimental conditions: prolonged sitting (SIT), 30-min bout of moderate-to-vigorous exercise followed by prolonged sitting (EX), and 3-min bouts of light-intensity walking every 30 min of sitting (BR). Postprandial glucose, insulin, c-peptide, triglycerides, cytokines, lipid classes/subclasses (lipidomics), and blood pressure responses were assessed. Muscle biopsies were collected following each session to assess targeted proteins/genes. Glucose [-28% in area under the curve (AUC), P = 0.036], insulin (-28% in AUC, P = 0.016), and c-peptide (-27% in AUC, P = 0.006) postprandial responses were attenuated in BR versus SIT, whereas only c-peptide was lower in EX versus SIT (-20% in AUC, P = 0.002). IL-1ß decreased during BR, but increased during EX and SIT (P = 0.027 and P = 0.085, respectively). IL-1ra was increased during EX versus BR (P = 0.002). TNF-α concentrations decreased during BR versus EX (P = 0.022). EX, but not BR, reduced systolic blood pressure (P = 0.013). Lipidomic analysis showed that 7 of 36 lipid classes/subclasses were significantly different between conditions, with greater changes being observed in EX. No differences were observed for protein/gene expression. Brief active breaks in sitting can offset markers of cardiometabolic disturbance, which may be particularly useful for patients who may find it difficult to adhere to exercise.NEW & NOTEWORTHY Exercise is a treatment in rheumatoid arthritis but is challenging for some patients. Light-intensity breaks in sitting could be a promising alternative. Our findings show beneficial, but differential, cardiometabolic effects of active breaks in sitting and exercise in patients with rheumatoid arthritis. Breaks in sitting mainly improved glycemic and inflammatory markers, whereas exercise improved lipidomic and hypotensive responses. Breaks in sitting show promise in offsetting aspects of cardiometabolic disturbance associated with prolonged sitting in rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide , Sistema Cardiovascular/fisiopatología , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Conducta Sedentaria , Anciano , Artritis Reumatoide/metabolismo , Artritis Reumatoide/fisiopatología , Artritis Reumatoide/terapia , Glucemia/metabolismo , Factores de Riesgo Cardiometabólico , Estudios Cruzados , Femenino , Humanos , Insulina/metabolismo , Persona de Mediana Edad , Periodo Posprandial , Caminata/fisiología
18.
Metabolites ; 11(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34564462

RESUMEN

Lipid metabolism is tightly linked to adiposity. Comprehensive lipidomic profiling offers new insights into the dysregulation of lipid metabolism in relation to weight gain. Here, we investigated the relationship of the human plasma lipidome and changes in waist circumference (WC) and body mass index (BMI). Adults (2653 men and 3196 women), 25-95 years old who attended the baseline survey of the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) and the 5-year follow-up were enrolled. A targeted lipidomic approach was used to quantify 706 distinct molecular lipid species in the plasma samples. Multiple linear regression models were used to examine the relationship between the baseline lipidomic profile and changes in WC and BMI. Metabolic scores for change in WC were generated using a ridge regression model. Alkyl-diacylglycerol such as TG(O-50:2) [NL-18:1] displayed the strongest association with change in WC (ß-coefficient = 0.125 cm increment per SD increment in baseline lipid level, p = 2.78 × 10-11. Many lipid species containing linoleate (18:2) fatty acids were negatively associated with both WC and BMI gain. Compared to traditional models, multivariate models containing lipid species identify individuals at a greater risk of gaining WC: top quintile relative to bottom quintile (odds ratio, 95% CI = 5.4, 3.8-6.6 for women and 2.3, 1.7-3.0 for men). Our findings define metabolic profiles that characterize individuals at risk of weight gain or WC increase and provide important insight into the biological role of lipids in obesity.

19.
Metabolites ; 11(5)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066368

RESUMEN

Plasmalogens or alkenylphospholipids are a sub-class of glycerophospholipids with numerous biological functions and are thought to have protective effects against metabolic disease. Dietary supplementation with alkylglycerols (AKGs) has been shown to increase endogenous plasmalogen levels, however effective modulation of different molecular plasmalogen species has not yet been demonstrated. In this study, the effects of an orally-administered AKG mix (a mixture of chimyl, batyl and selachyl alcohol at a 1:1:1 ratio) on plasma and tissue lipids, including plasmalogens, was evaluated. Mice on a Western-type diet were treated with either an AKG mix or vehicle (lecithin) for 1, 2, 4, 8 and 12 weeks. Treatment with the AKG mix significantly increased the total plasmalogen content of plasma, liver and adipose tissue as a result of elevations in multiple plasmalogen species with different alkenyl chains. Alkylphospholipids, the endogenous precursors of plasmalogens, showed a rapid and significant increase in plasma, adipose tissue, liver and skeletal muscle. A significant accumulation of alkyl-diacylglycerol and lyso-ether phospholipids was also observed in plasma and tissues. Additionally, the dynamics of plasmalogen-level changes following AKG mix supplementation differed between tissues. These findings indicate that oral supplementation with an AKG mix is capable of upregulating and maintaining stable expression of multiple molecular plasmalogen species in circulation and tissues.

20.
Metabolites ; 11(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070445

RESUMEN

Statins are the first-line lipid-lowering therapy for reducing cardiovascular disease (CVD) risk. A plasma lipid ratio of two phospholipids, PI(36:2) and PC(18:0_20:4), was previously identified to explain 58% of the relative CVD risk reduction associated with pravastatin, independent of a change in low-density lipoprotein-cholesterol. This ratio may be a potential biomarker for the treatment effect of statins; however, the underlying mechanisms linking this ratio to CVD risk remain unclear. In this study, we investigated the effect of altered cholesterol conditions on the lipidome of cultured human liver cells (Hep3B). Hep3B cells were treated with simvastatin (5 µM), cyclodextrin (20 mg/mL) or cholesterol-loaded cyclodextrin (20 mg/mL) for 48 hours and their lipidomes were examined. Induction of a low-cholesterol environment via simvastatin or cyclodextrin was associated with elevated levels of lipids containing arachidonic acid and decreases in phosphatidylinositol species and the PI(36:2)/PC(18:0_20:4) ratio. Conversely, increasing cholesterol levels via cholesterol-loaded cyclodextrin resulted in reciprocal regulation of these lipid parameters. Expression of genes involved in cholesterol and fatty acid synthesis supported the lipidomics data. These findings demonstrate that the PI(36:2)/PC(18:0_20:4) ratio responds to changes in intracellular cholesterol abundance per se, likely through a flux of the n-6 fatty acid pathway and altered phosphatidylinositol synthesis. These findings support this ratio as a potential marker for CVD risk reduction and may be useful in monitoring treatment response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...