Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 109: 560-568, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29274424

RESUMEN

Environmental issues are promoting the development of innovative technologies for the production of renewable energy and "green products" from plant biomass residues. These technologies rely on the conversion of the plant cell wall (PCW) polysaccharides into simple sugars, which involve synergistic activities of different PCW degrading enzymes, including xylanases; these are widely applied in food and feed sectors, paper and textile industries, among others. We cloned, expressed and biochemically characterized a novel xylanase (Xyn10) from the GH10 identified in a metatranscriptome of compost-derived microbial consortia and determined its low-resolution SAXS molecular envelope in solution. Our results reveal that Xyn10 is a monomeric flexible globular enzyme, with high stability with a broad pH range from 4 to 10 and optimal activity conditions at pH 7 and 40 °C. Only 10% of activity loss was observed after the enzyme was incubated for 30 h at 40 °C with a pH ranging from 5 to 10. Moreover, Xyn10 maintained 100% of its initial activity after incubation for 120 h at 40 °C and 51% after incubation for 24 h at 50 °C (pH = 7.0). Xyn10 shows endocatalytic activity towards xylan and arabinoxylan, liberating xylose, xylobiose, 1,2-α-d-methylglucuronic acid decorated xylotriose, and 1,3-α-l-arabinofuranose decorated xylobiose and xylotriose oligosaccharides.


Asunto(s)
Celulosa/metabolismo , Compostaje , Endo-1,4-beta Xilanasas/metabolismo , Microbiología , Saccharum/química , Tampones (Química) , Clonación Molecular , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/genética , Modelos Moleculares , Estructura Secundaria de Proteína
2.
AMB Express ; 4: 36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24949270

RESUMEN

Cellulose degrading enzymes usually have a two-domain structure consisting of a catalytic domain and a non-catalytic carbohydrate-binding module. Although it is well known the importance of those modules in cell wall degrading process, their function is not yet fully understood. Here, we analyze the cellulose-hydrolysis activity enhancement promoted by the cellobiohydrolase I carbohydrate-binding module from Trichoderma harzianum. It was cloned, expressed, purified and used in combination with either a commercial cellulase preparation, T. reesei cellobiohydrolase I or its separate catalytic domain to hydrolyze filter paper. In all cases the amount of glucose released was increased, reaching up to 30% gain when the carbohydrate-binding module was added to the reaction. We also show that this effect seems to be mediated by a decrease in the recalcitrance of the cellulosic substrate. This effect was observed both for crystalline cellulose samples which underwent incubation with the CBM prior to application of cellulases and for the ones incubated simultaneously. Our studies demonstrate that family 1 carbohydrate-binding modules are able to potentiate the enzymatic degradation of the polysaccharides and their application might contribute to diminishing the currently prohibitive costs of the lignocellulose saccharification process.

3.
Eur Biophys J ; 41(1): 89-98, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22048567

RESUMEN

Due to its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum (T. harzianum) has considerable potential in biomass hydrolysis application. Cellulases from Trichoderma reesei have been widely used in studies of cellulose breakdown. However, cellulases from T. harzianum are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from T. harzianum (Th Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect Th Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of Th Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of Th Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of Th Cel7A at different pH and temperature conditions.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Temperatura , Trichoderma/enzimología , Celobiosa/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno
4.
J Microbiol Biotechnol ; 21(8): 808-17, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21876370

RESUMEN

Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pI of 5.23. As confirmed by smallangle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed alpha- helices and beta-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of 50 degrees C with specific activities against Avicel and p-nitrophenyl-ß-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/aislamiento & purificación , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Trichoderma/enzimología , Secuencia de Aminoácidos , Fenómenos Biofísicos , Biofisica , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Especificidad por Sustrato , Trichoderma/química , Trichoderma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA