RESUMEN
BACKGROUND: Seafood consumers are widely exposed to diclofenac due to the high contamination levels often present in aquatic organisms. It is a potential risk to public health due its endocrine disruptor properties. Limited information is available about diclofenac behavior after food digestion to enable a more realistic scenario of consumer exposure. This study aimed to evaluate cooking effects on diclofenac levels, and determine diclofenac bioaccessibility by an in vitro digestion assay, using commercial fish species (seabass and white mullet) as models. The production of the main metabolite 4'-hydroxydiclofenac was also investigated. Fish hamburgers were spiked at two levels (150 and 1000 ng g-1) and submitted to three culinary treatments (roasting, steaming and grilling). RESULTS: The loss of water seems to increase the diclofenac levels after cooking, except in seabass with higher levels. The high bioaccessibility of diclofenac (59.1-98.3%) observed in both fish species indicates that consumers' intestines are more susceptible to absorption, which can be worrisome depending on the level of contamination. Contamination levels did not affect the diclofenac bioaccessibility in both species. Seabass, the fattest species, exhibited a higher bioaccessibility of diclofenac compared to white mullet. Overall, cooking decreased diclofenac bioaccessibility by up to 40% in seabass and 25% in white mullet. The main metabolite 4'-hydroxydiclofenac was not detected after cooking or digestion. CONCLUSION: Thus, consumption of cooked fish, preferentially grilled seabass and steamed or baked white mullet are more advisable. This study highlights the importance to consider bioaccessibility and cooking in hazard characterization studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Culinaria , Diclofenaco , Digestión , Contaminación de Alimentos , Alimentos Marinos , Diclofenaco/metabolismo , Diclofenaco/química , Animales , Contaminación de Alimentos/análisis , Alimentos Marinos/análisis , Peces/metabolismo , Lubina/metabolismo , Humanos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Smegmamorpha/metabolismo , Modelos BiológicosRESUMEN
Pharmaceuticals (PhACs) are considered emerging contaminants with potential accumulation in aquatic organisms. Thus, seafood consumption may cause long-term effects and health risk for consumers. In the present study, the occurrence of PhACs in seafood from two Brazilian coastal areas, Sepetiba Bay (n = 43) and Parnaiba Delta River (n = 48), was determined for the first time, and their potential risk for human health was assessed. An eco-friendly multi-analytes method was used, after being validated for the different types of matrices (mussels, fatty and lean fish). All compounds under study were detected at least in four seafood species, including chloramphenicol, an antibiotic prohibited in animal foods. Most PhACs had mean concentrations below limit of quantification. Ibuprofen and other nonsteroidal anti-inflammatory drugs (NSAIDs), as well as simvastatin and carbamazepine were the main PhACs bioaccumulated in edible parts of seafood species from Brazil. The high trophic level carnivorous species, snook, was the most contaminated by NSAIDs, while bivalves were the seafood more contaminated by lipid regulators. The profile of contamination did not vary among different types of matrix, except in relation to carbamazepine and ketoprofen. These PhACs were more abundant in species from Sepetiba Bay, an area highly impacted by human influence. The estimated daily exposure for Brazilian population that consumes the studied species was up to 20.3 ng/kg bw/day via carib pointed-venus and 25.7 ng/kg bw/day via snooks, lower than acceptable daily intake. Thus, consumption of seafood species from Sepetiba Bay and Parnaiba Delta River seems to be safe to the population in what concerns the PhACs studied.