Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7939, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261458

RESUMEN

Acinetobacter baumannii is a pathogenic and multidrug-resistant Gram-negative bacterium that causes severe nosocomial infections. To better understand the mechanism of pathogenesis, we compare the proteomes of uninfected and infected human cells, revealing that transcription factor FOS is the host protein most strongly induced by A. baumannii infection. Pharmacological inhibition of FOS reduces the cytotoxicity of A. baumannii in cell-based models, and similar results are also observed in a mouse infection model. A. baumannii outer membrane vesicles (OMVs) are shown to activate the aryl hydrocarbon receptor (AHR) of host cells by inducing the host enzyme tryptophan-2,3-dioxygenase (TDO), producing the ligand kynurenine, which binds AHR. Following ligand binding, AHR is a direct transcriptional activator of the FOS gene. We propose that A. baumannii infection impacts the host tryptophan metabolism and promotes AHR- and FOS-mediated cytotoxicity of infected cells.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Quinurenina , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Humanos , Animales , Ratones , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/metabolismo , Quinurenina/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Triptófano/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Interacciones Huésped-Patógeno
2.
Autophagy ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291751

RESUMEN

The KEAP1-NFE2L2 axis is essential for the cellular response against metabolic and oxidative stress. KEAP1 is an adaptor protein of CUL3 (cullin 3) ubiquitin ligase that controls the cellular levels of NFE2L2, a critical transcription factor of several cytoprotective genes. Oxidative stress, defective autophagy and pathogenic infections activate NFE2L2 signaling through phosphorylation of the autophagy receptor protein SQSTM1, which competes with NFE2L2 for binding to KEAP1. Here we show that phosphoribosyl-linked serine ubiquitination of SQSTM1 catalyzed by SidE effectors of Legionella pneumophila controls NFE2L2 signaling and cell metabolism upon Legionella infection. Serine ubiquitination of SQSTM1 sterically blocks its binding to KEAP1, resulting in NFE2L2 ubiquitination and degradation. This reduces NFE2L2-dependent antioxidant synthesis in the early phase of infection. Levels of serine ubiquitinated SQSTM1 diminish in the later stage of infection allowing the expression of NFE2L2-target genes; causing a differential regulation of the host metabolome and proteome in a NFE2L2-dependent manner.

3.
Curr Opin Immunol ; 84: 102368, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451128

RESUMEN

Cell-autonomous immunity is the first line of defense by which cells recognize and contribute to eliminating invasive pathogens. It is composed of immune signaling networks that sense microbial pathogens, promote pathogen restriction, and stimulate their elimination, including host cell death. Ubiquitination is a pivotal orchestrator of these pathways, by changing the activity of signal transducers and effector proteins in an efficient way. In this review, we will focus on how ubiquitin connects the pathways that sense pathogens to the cellular responses to invaders and shed light on how ubiquitination impacts the microenvironment around the infected cell, stimulating the appropriate immune response. Finally, we discuss therapeutic options directed at favoring cell-autonomous immune responses to infection.

4.
Trends Parasitol ; 39(6): 445-460, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061442

RESUMEN

Malaria is a febrile illness caused by species of the protozoan parasite Plasmodium and is characterized by recursive infections of erythrocytes, leading to clinical symptoms and pathology. In mammals, Plasmodium parasites undergo a compulsory intrahepatic development stage before infecting erythrocytes. Liver-stage parasites have a metabolic configuration to facilitate the replication of several thousand daughter parasites. Their metabolism is of interest to identify cellular pathways essential for liver infection, to kill the parasite before onset of the disease. In this review, we summarize the current knowledge on nutrient acquisition and biosynthesis by liver-stage parasites mostly generated in murine malaria models, gaps in knowledge, and challenges to create a holistic view of the development and deficiencies in this field.


Asunto(s)
Malaria , Parásitos , Plasmodium , Animales , Ratones , Plasmodium/metabolismo , Hígado/parasitología , Malaria/parasitología , Parásitos/metabolismo , Eritrocitos/parasitología , Proteínas Protozoarias/metabolismo , Mamíferos
5.
Nat Commun ; 11(1): 5654, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159090

RESUMEN

Plasmodium parasites possess a translocon that exports parasite proteins into the infected erythrocyte. Although the translocon components are also expressed during the mosquito and liver stage of infection, their function remains unexplored. Here, using a combination of genetic and chemical assays, we show that the translocon component Exported Protein 2 (EXP2) is critical for invasion of hepatocytes. EXP2 is a pore-forming protein that is secreted from the sporozoite upon contact with the host cell milieu. EXP2-deficient sporozoites are impaired in invasion, which can be rescued by the exogenous administration of recombinant EXP2 and alpha-hemolysin (an S. aureus pore-forming protein), as well as by acid sphingomyelinase. The latter, together with the negative impact of chemical and genetic inhibition of acid sphingomyelinase on invasion, reveals that EXP2 pore-forming activity induces hepatocyte membrane repair, which plays a key role in parasite invasion. Overall, our findings establish a novel and critical function for EXP2 that leads to an active participation of the host cell in Plasmodium sporozoite invasion, challenging the current view of the establishment of liver stage infection.


Asunto(s)
Hepatocitos/parasitología , Hígado/parasitología , Malaria/parasitología , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Humanos , Hígado/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Transporte de Proteínas , Proteínas Protozoarias/genética , Esporozoítos/genética , Esporozoítos/metabolismo
6.
Curr Biol ; 29(13): R632-R634, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31287981

RESUMEN

Female Anopheles mosquitoes are the definitive hosts of Plasmodium parasites. A new study has found that successful establishment and development of Plasmodium in the Anopheles midgut requires mosquito oogenesis, without affecting egg production.


Asunto(s)
Anopheles , Parásitos , Plasmodium , Animales , Femenino
7.
Nat Microbiol ; 3(1): 17-25, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29109477

RESUMEN

The causative agent of malaria, Plasmodium, replicates inside a membrane-bound parasitophorous vacuole (PV), which shields this intracellular parasite from the cytosol of the host cell 1 . One common threat for intracellular pathogens is the homeostatic process of autophagy, through which cells capture unwanted intracellular material for lysosomal degradation 2 . During the liver stage of a malaria infection, Plasmodium parasites are targeted by the autophagy machinery of the host cell, and the PV membrane (PVM) becomes decorated with several autophagy markers, including LC3 (microtubule-associated protein 1 light chain 3) 3,4 . Here we show that Plasmodium berghei parasites infecting hepatic cells rely on the PVM transmembrane protein UIS3 to avoid elimination by host-cell-mediated autophagy. We found that UIS3 binds host LC3 through a non-canonical interaction with a specialized surface on LC3 where host proteins with essential functions during autophagy also bind. UIS3 acts as a bona fide autophagy inhibitor by competing with host LC3-interacting proteins for LC3 binding. Our work identifies UIS3, one of the most promising candidates for a genetically attenuated vaccine against malaria 5 , as a unique and potent mediator of autophagy evasion in Plasmodium. We propose that the protein-protein interaction between UIS3 and host LC3 represents a target for antimalarial drug development.


Asunto(s)
Autofagia/fisiología , Hepatocitos/patología , Malaria/patología , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Plasmodium berghei/genética , Animales , Autofagosomas/metabolismo , Línea Celular , Células HEK293 , Células Hep G2 , Hepatocitos/parasitología , Hepatocitos/ultraestructura , Interacciones Huésped-Patógeno , Humanos , Malaria/fisiopatología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidad , Unión Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Vacuolas/metabolismo
8.
Nat Microbiol ; 2(12): 1600-1607, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28947801

RESUMEN

The relevance of genetic factors in conferring protection to severe malaria has been demonstrated, as in the case of sickle cell trait and G6PD deficiency 1 . However, it remains unknown whether environmental components, such as dietary or metabolic variations, can contribute to the outcome of infection 2 . Here, we show that administration of a high-fat diet to mice for a period as short as 4 days impairs Plasmodium liver infection by over 90%. Plasmodium sporozoites can successfully invade and initiate replication but die inside hepatocytes, thereby are unable to cause severe disease. Transcriptional analyses combined with genetic and chemical approaches reveal that this impairment of infection is mediated by oxidative stress. We show that reactive oxygen species, probably spawned from fatty acid ß-oxidation, directly impact Plasmodium survival inside hepatocytes, and parasite load can be rescued by exogenous administration of the antioxidant N-acetylcysteine or the ß-oxidation inhibitor etomoxir. Together, these data reveal that acute and transient dietary alterations markedly impact the establishment of a Plasmodium infection and disease outcome.


Asunto(s)
Dieta Alta en Grasa/métodos , Interacciones Huésped-Parásitos/genética , Malaria/dietoterapia , Acetilcisteína/metabolismo , Animales , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/parasitología , Humanos , Hígado/metabolismo , Hígado/parasitología , Hepatopatías/metabolismo , Hepatopatías/parasitología , Macrófagos/parasitología , Macrófagos/patología , Malaria/sangre , Malaria/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Carga de Parásitos , Plasmodium berghei , Especies Reactivas de Oxígeno , Rasgo Drepanocítico/metabolismo , Esporozoítos/metabolismo
9.
Cell Microbiol ; 19(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27404888

RESUMEN

Intracellular pathogens have evolved mechanisms to ensure their survival and development inside their host cells. Here, we show that glucose is a pivotal modulator of hepatic infection by the rodent malaria parasite Plasmodium berghei and that glucose uptake via the GLUT1 transporter is specifically enhanced in P. berghei-infected cells. We further show that ATP levels of cells containing developing parasites are decreased, which is known to enhance membrane GLUT1 activity. In addition, GLUT1 molecules are translocated to the membrane of the hepatic cell, increasing glucose uptake at later stages of infection. Chemical inhibition of GLUT1 activity leads to a decrease in glucose uptake and the consequent impairment of hepatic infection, both in vitro and in vivo. Our results reveal that changes in GLUT1 conformation and cellular localization seem to be part of an adaptive host response to maintain adequate cellular nutrition and energy levels, ensuring host cell survival and supporting P. berghei hepatic development.


Asunto(s)
Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Interacciones Huésped-Patógeno , Hígado/patología , Hígado/parasitología , Malaria/patología , Plasmodium berghei/fisiología , Adenosina Trifosfato/análisis , Animales , Línea Celular , Citosol/química , Humanos , Inmunohistoquímica , Ratones Endogámicos C57BL , Plasmodium berghei/crecimiento & desarrollo
10.
Biochim Biophys Acta ; 1828(9): 2152-63, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23747364

RESUMEN

Submillimolar concentrations of cytotoxic bile acids (BAs) induce cell death via apoptosis. On the other hand, several cytoprotective BAs were shown to prevent apoptosis in the same concentration range. Still, the mechanisms by which BAs trigger these opposite signaling effects remain unclear. This study was aimed to determine if cytotoxic and cytoprotective BAs, at physiologically active concentrations, are able to modulate the biophysical properties of lipid membranes, potentially translating into changes in the apoptotic threshold of cells. Binding of BAs to membranes was assessed through the variation of fluorescence parameters of suitable derivatized BAs. These derivatives partitioned with higher affinity to liquid disordered than to the cholesterol-enriched liquid ordered domains. Unlabeled BAs were also shown to have a superficial location upon interaction with the lipid membrane. Additionally, the interaction of cytotoxic BAs with membranes resulted in membrane expansion, as concluded from FRET data. Moreover, it was shown that cytotoxic BAs were able to significantly disrupt the ordering of the membrane by cholesterol at physiologically active concentrations of the BA, an effect not associated with cholesterol removal. On the other hand, cytoprotective bile acids had no effect on membrane properties. It was concluded that, given the observed effects on membrane rigidity, the apoptotic activity of cytotoxic BAs could be potentially associated with changes in plasma membrane organization (e.g. modulation of lipid domains) or with an increase in mitochondrial membrane affinity for apoptotic proteins.


Asunto(s)
Ácido Desoxicólico/química , Membrana Dobles de Lípidos/química , Ácido Tauroquenodesoxicólico/química , Ácido Ursodesoxicólico/química , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , Colesterol/química , Difenilhexatrieno , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA