Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(15): 5555-5563, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638227

RESUMEN

We describe the first experimental example of a theoretically predicted Frustrated Lewis Trio (FLT). A tetradentate PNNP ligand is used to stabilise a highly electrophilic [TiCl3]+ fragment in a way that results in two equally long and frustrated Ti-P bonds. A combined experimental and computational approach revealed a distinct role of each Lewis basic phosphine in the heterolytic activation of chemical bonds. This dual functionality is characterised by a pendulum-like hemilability, where one of the phosphines acts as a nucleophile while the other serves as a hemilabile ligand that dynamically tunes the Ti-P distance as a function of the required electron density at the Ti centre.

2.
Membranes (Basel) ; 12(12)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36557103

RESUMEN

In the present study, the problem of sulfuric acid recycling from spent copper plating solution was solved using a hybrid membrane technology, including diffusion dialysis and electrodialysis. A real solution from the production of copper-coated steel wire, containing 1.45 mol/L of sulfuric acid, 0.67 mol/L of ferrous sulfate and 0.176 mol/L of copper sulfate, was processed. Diffusion dialysis with anion-exchange membranes was used to separate sulfuric acid and salts of heavy metals. Then, purified dilute sulfuric acid was concentrated by electrodialysis. The energy consumption for sulfuric acid electrodialysis concentration at a current density of 400 A/m2 was 162 W·h/mol, with a current efficiency of 16%. After processing according to the hybrid membrane scheme, the solution contained 1.13 mol/L sulfuric acid, 0.077 mol/L ferrous sulfate and 0.022 mol/L copper sulfate. According to established requirements, the solution of a copper plating bath had to contain from 0.75 to 1.25 M sulfuric acid, 0.16-0.18 M of copper sulfate and ferrous sulfate not more than 0.15 M. The resulting acid solution with a small amount of ferrous sulfate and copper sulfate could be used to prepare a copper plating bath solution.

3.
Membranes (Basel) ; 12(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36363657

RESUMEN

A kinetic model of the bipolar electrodialysis process with a two-chamber unit cell formed by a bilayer (bipolar or asymmetric bipolar) and cation-exchange membrane is proposed. The model allows describing various processes: pH adjustment of strong electrolyte solutions, the conversion of a salt of a weak acid, pH adjustment of a mixture of strong and weak electrolytes. The model considers the non-ideal selectivity of the bilayer membrane, as well as the competitive transfer of cations (hydrogen and sodium ions) through the cation-exchange membrane. Analytical expressions are obtained that describe the kinetic dependences of pH and concentration of ionic components in the desalination (acidification) compartment for various cases. Comparison of experimental data with calculations results show a good qualitative and, in some cases, quantitative agreement between experimental and calculated data. The model can be used to predict the performance of small bipolar membrane electrodialysis modules designed for pH adjustment processes.

4.
Membranes (Basel) ; 13(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36676854

RESUMEN

A model is proposed that describes the transfer of ions and the process of water dissociation in a system with a bipolar membrane and adjacent diffusion layers. The model considers the transfer of four types of ions: the cation and anion of salt and the products of water dissociation-hydrogen and hydroxyl ions. To describe the process of water dissociation, a model for accelerating the dissociation reaction with the participation of ionogenic groups of the membrane is adopted. The boundary value problem is solved numerically using COMSOL® Multiphysics 5.5 software. An analysis of the results of a numerical experiment shows that, at least in a symmetric electromembrane system, there is a kinetic limitation of the water dissociation process, apparently associated with the occurrence of water recombination reaction at the of the bipolar region. An interpretation of the entropy factor (ß) is given as a characteristic length, which shows the possibility of an ion that appeared because of the water dissociation reaction to be removed from the reaction zone without participating in recombination reactions.

5.
Membranes (Basel) ; 11(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34940481

RESUMEN

The processing of solutions containing sodium salts of naphthenic acids (sodium naphthenate) is in high demand due to the high value of the latter. Such solutions usually include an excessive amount of alkali and a pH of around 13. Bipolar electrodialysis can convert sodium naphthenates into naphthenic acids; however, until pH 6.5, the naphthenic acids are not released from the solution. The primary process leading to a decrease in pH is the removal of excess alkali that implies that some part of electricity is wasted. In this work, we propose a technique for the surface modification of anion-exchange membranes with sulfonated polyetheretherketone, with the formation of bilayer membranes that are resistant to poisoning by the naphthenate anions. We investigated the electrochemical properties of the obtained membranes and their efficiency in a laboratory electrodialyzer. Modified membranes have better electrical conductivity, a high current efficiency for hydroxyl ions, and a low tendency to poisoning than the commercial membrane MA-41. We propose that the primary current carrier is the hydroxyl ion in both electromembrane systems with the MA-41 and MA-41M membranes. At the same time, for the modified MA-41M membrane, the concentration of hydroxyl ions in the anion-exchanger phase is higher than in the MA-41 membrane, which leads to almost five-fold higher values of the specific permeability coefficient. The MA-41M membranes are resistant to poisoning by naphthenic acids anions during at least six cycles of processing of the sodium naphthenate solution.

6.
Membranes (Basel) ; 11(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071631

RESUMEN

The paper shows the possibility of using a microheterogeneous model to estimate the transport numbers of counterions through ion-exchange membranes. It is possible to calculate the open-circuit potential and power density of the reverse electrodialyzer using the data obtained. Eight samples of heterogeneous ion-exchange membranes were studied, two samples for each of the following types of membranes: Ralex CM, Ralex AMH, MK-40, and MA-41. Samples in each pair differed in the year of production and storage conditions. In the work, these samples were named "batch 1" and "batch 2". According to the microheterogeneous model, to calculate the transport numbers of counterions, it is necessary to use the concentration dependence of the electrical conductivity and diffusion permeability. The electrolyte used was a sodium chloride solution with a concentration range corresponding to the conditional composition of river water and the salinity of the Black Sea. During the research, it was found that samples of Ralex membranes of different batches have similar characteristics over the entire range of investigated concentrations. The calculated values of the transfer numbers for membranes of different batches differ insignificantly: ±0.01 for Ralex AMH in 1 M NaCl. For MK-40 and MA-41 membranes, a significant scatter of characteristics was found, especially in concentrated solutions. As a result, in 1 M NaCl, the transport numbers differ by ±0.05 for MK-40 and ±0.1 for MA-41. The value of the open circuit potential for the Ralex membrane pair showed that the experimental values of the potential are slightly lower than the theoretical ones. At the same time, the maximum calculated power density is higher than the experimental values. The maximum power density achieved in the experiment on reverse electrodialysis was 0.22 W/m2, which is in good agreement with the known literature data for heterogeneous membranes. The discrepancy between the experimental and theoretical data may be the difference in the characteristics of the membranes used in the reverse electrodialysis process from the tested samples and does not consider the shadow effect of the spacer in the channels of the electrodialyzer.

7.
Membranes (Basel) ; 10(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334086

RESUMEN

Due to an error during production, Equations (10), (13)-(20), (23), (24) were unreadable in the published paper [...].

8.
Membranes (Basel) ; 10(11)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207651

RESUMEN

Bilayer ion-exchange membranes are mainly used for separating single and multiply charged ions. It is well known that in membranes in which the layers have different charges of the ionogenic groups of the matrix, the limiting current decreases, and the water splitting reaction accelerates in comparison with monolayer (isotropic) ion-exchange membranes. We study samples of bilayer ion-exchange membranes with very thin cation-exchange layers deposited on an anion-exchange membrane-substrate in this work. It was revealed that in bilayer membranes, the limiting current's value is determined by the properties of a thin surface film (modifying layer). A linear regularity of the dependence of the non-equilibrium effective rate constant of the water-splitting reaction on the resistance of the bipolar region, which is valid for both bilayer and bipolar membranes, has been revealed. It is shown that the introduction of the catalyst significantly reduces the water-splitting voltage, but reduces the selectivity of the membrane. It is possible to regulate the fluxes of salt ions and water splitting products (hydrogen and hydroxyl ions) by changing the current density. Such an ability makes it possible to conduct a controlled process of desalting electrolytes with simultaneous pH adjustment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...