Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cureus ; 15(12): e49890, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38174178

RESUMEN

Generative artificial intelligence (AI) is rapidly transforming the medical field, as advanced tools powered by large language models (LLMs) make their way into clinical practice, research, and education. Chatbots, which can generate human-like responses, have gained attention for their potential applications. Therefore, familiarity with LLMs and other promising generative AI tools is crucial to harness their potential safely and effectively. As these AI-based technologies continue to evolve, medical professionals must develop a strong understanding of AI terminologies and concepts, particularly generative AI, to effectively tackle real-world challenges and create solutions. This knowledge will enable healthcare professionals to utilize AI-driven innovations for improved patient care and increased productivity in the future. In this brief technical report, we explore 20 of the most relevant terminology associated with the underlying technology behind LLMs and generative AI as they relate to the medical field and provide some examples of how these topics relate to healthcare applications to help in their understanding.

2.
Antioxidants (Basel) ; 7(8)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096794

RESUMEN

Right-sided heart failure is the major cause of death among patients who suffer from various forms of pulmonary hypertension and congenital heart disease. The right ventricle (RV) and left ventricle (LV) originate from different progenitor cells and function against very different blood pressures. However, differences between the RV and LV formed after birth have not been well defined. Work from our laboratory and others has accumulated evidence that redox signaling, oxidative stress and antioxidant regulation are important components that define the RV/LV differences. The present article summarizes the progress in understanding the roles of redox biology in the RV chamber-specificity. Understanding the mechanisms of RV/LV differences should help develop selective therapeutic strategies to help patients who are susceptible to and suffering from right-sided heart failure. Modulations of redox biology may provide effective therapeutic avenues for these conditions.

3.
PLoS One ; 12(8): e0182551, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28809956

RESUMEN

AIMS: Pulmonary arterial hypertension (PAH) is a lethal disease and improved therapeutic strategies are needed. Increased pulmonary arterial pressure, due to vasoconstriction and vascular remodeling, causes right ventricle (RV) failure and death in patients. The treatment of Sprague-Dawley rats with SU5416 injection and exposure to chronic hypoxia for three weeks followed by maintenance in normoxia promote progressive and severe PAH with pathologic features that resemble human PAH. At 5-17 weeks after the SU5416 injection, PAH is developed with pulmonary vascular remodeling as well as RV hypertrophy and fibrosis. The present study investigated subsequent events that occur in these PAH animals. METHODS & RESULTS: At 35 weeks after the SU5416 injection, rats still maintained high RV pressure, but pulmonary vascular remodeling was significantly reduced. Metabolomics analysis revealed that lungs of normal rats and rats from the 35-week time point had different metabolomics profiles. Despite the maintenance of high RV pressure, fibrosis was resolved at 35-weeks. Masson's trichrome stain and Western blotting monitoring collagen 1 determined 12% fibrosis in the RV at 17-weeks, and this was decreased to 5% at 35-weeks. The level of myofibroblasts was elevated at 17-weeks and normalized at 35-weeks. CONCLUSIONS: These results suggest that biological systems possess natural ways to resolve pulmonary and RV remodeling. The resolution of RV fibrosis appears to involve the reduction of myofibroblast-dependent collagen synthesis. Understanding these endogenous mechanisms should help improve therapeutic strategies to treat PAH and RV failure.


Asunto(s)
Indoles/farmacología , Pirroles/farmacología , Remodelación Ventricular/efectos de los fármacos , Animales , Western Blotting , Fibrosis/fisiopatología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Hemodinámica/efectos de los fármacos , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/fisiopatología , Indoles/uso terapéutico , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Metabolómica , Arteria Pulmonar/efectos de los fármacos , Pirroles/uso terapéutico , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...