Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 241(6): 2589-2605, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37882322

RESUMEN

The occurrence of conducting vascular tissue in the pith (CVTP) of tracheophytes is noteworthy. Medullary bundles, one of the remarkable examples of CVTP, evolved multiple times across angiosperms, notably in the Caryophyllales. Yet, information on the occurrence of medullary bundles is fragmented, hampering our understanding of their structure-function relationships, and evolutionary implications. Using three plastid molecular markers (matK, rbcL, and rps16 intron), a phylogeny is constructed for 561 species of Caryophyllales, and anatomical data are assembled for 856 species across 40 families to investigate the diversity of medullary bundles, their function, evolution, and diversification dynamics. Additionally, correlated evolution between medullary bundles and successive cambia was tested. Medullary bundles are ancestrally absent in Caryophyllales and evolved in core and noncore families. They are structurally diverse (e.g. number, arrangement, and types of bundles) and functionally active throughout the plant's lifespan, providing increased hydraulic conductivity, especially in herbaceous plants. Acquisition of medullary bundles does not explain diversification rate heterogeneity but is correlated to a higher diversification rate. Disparate developmental pathways were found leading to rampant convergent evolution of CVTP in Caryophyllales. These findings indicate the diversification of medullary bundles and vascular tissues as another central theme for functional and comparative molecular studies in Caryophyllales.


Asunto(s)
Caryophyllales , Magnoliopsida , Humanos , Filogenia , Evolución Molecular
2.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560264

RESUMEN

Unlike seed plants, ferns leaves are considered to be structures with delayed determinacy, with a leaf apical meristem similar to the shoot apical meristems. To better understand the meristematic organization during leaf development and determinacy control, we analyzed the cell divisions and expression of Class I KNOX genes in Mickelia scandens, a fern that produces larger leaves with more pinnae in its climbing form than in its terrestrial form. We performed anatomical, in situ hybridization, and qRT-PCR experiments with histone H4 (cell division marker) and Class I KNOX genes. We found that Class I KNOX genes are expressed in shoot apical meristems, leaf apical meristems, and pinnae primordia. During early development, cell divisions occur in the most distal regions of the analyzed structures, including pinnae, and are not restricted to apical cells. Fern leaves and pinnae bear apical meristems that may partially act as indeterminate shoots, supporting the hypothesis of homology between shoots and leaves. Class I KNOX expression is correlated with indeterminacy in the apex and leaf of ferns, suggesting a conserved function for these genes in euphyllophytes with compound leaves.


Asunto(s)
Dryopteridaceae/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Plantas/genética , División Celular , Dryopteridaceae/crecimiento & desarrollo , Meristema/genética , Meristema/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Distribución Tisular
3.
Am J Bot ; 106(9): 1156-1172, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31517989

RESUMEN

PREMISE: Laticifers have evolved multiple times in angiosperms and have been interpreted as a key innovation involved in plant defense mechanisms. In Malpighiaceae, laticifers were previously known from a single lineage of trees and shrubs, the Galphimia clade, but with detailed anatomical analyses here, we show that their distribution is broader in the family, also encompassing large clades of lianas. METHODS: From 15 genera, 70 species of Malpighiaceae were surveyed through careful anatomical ontogenetic analysis of roots, stems, and leaves and detailed histochemical tests to elucidate the nature of laticifers and latex in the family. RESULTS: Articulated anastomosing laticifers were encountered in roots, stems, and leaves of two distantly related megadiverse genera of Malpighiaceae lianas: Stigmaphyllon (stigmaphylloid clade) and Tetrapterys s.s. (tetrapteroid clade). From the apex downward, in Stigmaphyllon the laticifers are derived from the procambium and from the cambium during its early activity and are present in the outermost part of the vascular cylinder of stems and leaves and in the pericycle of roots, whereas in Tetrapterys s.s. they are derived from the ground meristem, procambium, and cambium throughout the plant body and are present in the cortex and pith, either the pericycle in roots or the outermost part of the vascular system in stems and leaves, and the primary and secondary phloem. CONCLUSIONS: Laticifers seem to have evolved at least three times independently in Malpighiaceae, once in a lineage of trees and shrubs and twice in two distantly related megadiverse lianescent lineages. Laticifer evolution in Malpighiaceae is homoplastic and may be related to increases in species diversification.


Asunto(s)
Malpighiaceae , Látex , Meristema , Filogenia , Hojas de la Planta
4.
Evodevo ; 8: 3, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28174623

RESUMEN

BACKGROUND: Passiflora (passionflowers) makes an excellent model for studying plant evolutionary development. They are mostly perennial climbers that display axillary tendrils, which are believed to be modifications of the inflorescence. Passionflowers are also recognized by their unique flower features, such as the extra whorls of floral organs composed of corona filaments and membranes enclosing the nectary. Although some work on Passiflora organ ontogeny has been done, the developmental identity of both Passiflora tendrils and the corona is still controversial. Here, we combined ultrastructural analysis and expression patterns of the flower meristem and floral organ identity genes of the MADS-box AP1/FUL clade to reveal a possible role for these genes in the generation of evolutionary novelties in Passiflora. RESULTS: We followed the development of structures arising from the axillary meristem from juvenile to adult phase in P. edulis. We further assessed the expression pattern of P. edulis AP1/FUL homologues (PeAP1 and PeFUL), by RT-qPCR and in situ hybridization in several tissues, correlating it with the developmental stages of P. edulis. PeAP1 is expressed only in the reproductive stage, and it is highly expressed in tendrils and in flower meristems from the onset of their development. PeAP1 is also expressed in sepals, petals and in corona filaments, suggesting a novel role for PeAP1 in floral organ diversification. PeFUL presented a broad expression pattern in both vegetative and reproductive tissues, and it is also expressed in fruits. CONCLUSIONS: Our results provide new molecular insights into the morphological diversity in the genus Passiflora. Here, we bring new evidence that tendrils are part of the Passiflora inflorescence. This points to the convergence of similar developmental processes involving the recruitment of genes related to flower identity in the origin of tendrils in different plant families. The data obtained also support the hypothesis that the corona filaments are likely sui generis floral organs. Additionally, we provide an indication that PeFUL acts as a coordinator of passionfruit development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...