Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Prev Cardiol ; 22(4): 468-77, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24659026

RESUMEN

AIMS: Why South Asians are at increased risk of premature atherosclerotic cardiovascular diseases compared with other ethnic groups is not fully understood. Atherogenic dyslipoproteinemia - hypertriglyceridemia, elevated numbers of low-density lipoprotein (LDL) particles and low high-density lipoprotein cholesterol (HDL-C) - is more common in South Asians but the mechanisms responsible have not been explicated. Here we examined whether the circulating lipid transfer protein, cholesteryl ester transfer protein (CETP), plays a role in the pathogenesis of the atherogenic dyslipoproteinemia among South Asians. METHODS AND RESULTS: CETP activity was determined by exogenous substrate assay in the serum of healthy, metabolically well-characterized individuals of South Asian and European descent (N = 244 and 238, respectively). Serum and lipoprotein lipids and apolipoproteins were measured and lipoprotein particle number and size were quantified via nuclear magnetic resonance spectroscopy. All the elements of the atherogenic dyslipoproteinemia were more severe in South Asians and CETP activity was significantly greater by 30% in South Asians compared with Europeans, adjusted for age, sex, body mass index and waist circumference (p < 0.0001). CETP activity was directly associated with serum triglycerides and inversely with HDL-C in the whole population. CETP activity was also directly related to apoB and LDL particle number. Finally, increased CETP activity was associated with pro-atherogenic reductions in HDL and LDL particle size. CONCLUSIONS: We identified novel associations between elevated CETP activity and the triad of quantitative and qualitative lipoprotein abnormalities in the atherogenic dyslipidemia in South Asians, a major contributor of increased atherosclerotic cardiovascular diseases in South Asians.


Asunto(s)
Pueblo Asiatico , Aterosclerosis/sangre , Aterosclerosis/etnología , Proteínas de Transferencia de Ésteres de Colesterol/sangre , Dislipidemias/sangre , Dislipidemias/etnología , Adulto , Anciano , Asia/etnología , Aterosclerosis/diagnóstico , Biomarcadores/sangre , Canadá/epidemiología , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Estudios Transversales , Dislipidemias/diagnóstico , Europa (Continente)/etnología , Femenino , Disparidades en el Estado de Salud , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Índice de Severidad de la Enfermedad , Triglicéridos/sangre , Regulación hacia Arriba , Población Blanca
2.
Expert Rev Cardiovasc Ther ; 12(10): 1137-44, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25244623

RESUMEN

The proof of concept that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition affects cholesterol levels was first established after the demonstration that PCSK9 loss-of-function mutations result in a significant drop in circulating LDL cholesterol levels. Subsequent studies revealed that PCSK9 binds the epidermal growth factor precursor homology domain-A on the surface LDL Receptor (LDLR) and directs LDLR and PCSK9 for lysosomal degradation. Alirocumab (also known as SAR236553/REGN727) is a monoclonal antibody that binds circulating PCSK9 and blocks its interactions with surface LDLR. Alirocumab clinical trials with different doses on different administration schedules were shown to significantly reduce LDL cholesterol both as a mono-therapy and in combination with statins or ezetimibe. Although there is great potential for anti-PCSK9 therapies in the management of cholesterol metabolism, there is no clear evidence yet that blocking PCSK9 reduces cardiovascular disease outcome. This is being investigated in ongoing Phase III clinical trials with alirocumab.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Proproteína Convertasas/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Anticolesterolemiantes/farmacología , LDL-Colesterol/sangre , Ensayos Clínicos como Asunto , Quimioterapia Combinada , Humanos , Proproteína Convertasa 9 , Receptores de LDL/metabolismo , Serina Endopeptidasas
3.
J Am Coll Cardiol ; 59(19): 1697-705, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22554600

RESUMEN

OBJECTIVES: In this study, our goal was to determine if human resistin plays a role in regulating the uptake of atherogenic low-density lipoproteins in human hepatocytes. BACKGROUND: Serum levels of resistin, an adipose tissue-derived adipokine, are increased in human obesity and are positively correlated with atherosclerotic cardiovascular diseases. However, the function of resistin in humans is enigmatic. METHODS: Human hepatocytes (HepG2 and primary) were treated (24 h) with the following: 1) purified human resistin at various concentrations, with and without lovastatin; and 2) obese human serum with elevated resistin levels or serum from which resistin was removed via antibody-immunoprecipitation. The effect of the treatments on cellular low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) messenger ribonucleic acid and protein levels were determined by using real-time polymerase chain reaction and Western blotting, respectively. RESULTS: Resistin, at physiological levels observed in human obesity, down-regulated hepatocyte LDLR expression substantially (by 40%). A key mechanism by which human resistin inhibited LDLR levels was by increased cellular expression of the recently identified protease, PCSK9, which enhances intracellular LDLR lysosomal degradation. The quantitatively important role of human resistin in LDLR expression was demonstrated by antibody-immunoprecipitation removal of resistin in human serum, which decreased serum stimulation of hepatocyte LDLRs markedly (by 80%). Furthermore, resistin diminished statin-mediated up-regulation of the LDLR by 60%, implicating resistin in the relative ineffectiveness of statins in selective target populations. CONCLUSIONS: These results reveal for the first time that resistin is a highly attractive therapeutic target in ameliorating elevated serum low-density lipoprotein and, thereby, atherosclerotic cardiovascular diseases in obese humans.


Asunto(s)
Dislipidemias/metabolismo , Hepatocitos/metabolismo , Proproteína Convertasas/metabolismo , Receptores de LDL/antagonistas & inhibidores , Resistina/biosíntesis , Subtilisina/biosíntesis , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Inmunoprecipitación , Lovastatina/farmacología , Modelos Biológicos , Obesidad/sangre , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Receptores de LDL/metabolismo
4.
Circ Res ; 108(6): 727-42, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21293001

RESUMEN

RATIONALE: Obese individuals are at high risk for developing atherosclerosis primarily attributable to elevated plasma concentrations of apolipoprotein (apo)B-containing particles, including very-low-density lipoprotein (VLDL). Plasma levels of the adipose tissue adipokine resistin are increased in human obesity, and resistin expression is positively correlated with coronary atherosclerosis and VLDL levels. OBJECTIVE: We sought to determine for the first time whether resistin directly stimulates human hepatocyte production of apoB-containing particles and to elucidate the mechanisms responsible. METHODS AND RESULTS: Treatment of human hepatocytes with resistin at levels observed in human obesity stimulated apoB secretion up to 10-fold, because of increased microsomal triglyceride transfer protein (MTP) activity and decreased expression/phosphorylation of proteins in the insulin signaling pathways (insulin receptor substrate-2, Akt, and extracellular signal-regulated kinase). Resistin also increased hepatocyte lipid content by stimulating de novo lipogenesis via the SREBP1 and SREBP2 pathways. Furthermore, obese serum with elevated resistin levels induced greater hepatocyte stimulation of apoB secretion than lean human serum, an effect that was ameliorated by antibody immunoprecipitation removal of serum resistin. CONCLUSIONS: Resistin has a direct deleterious impact on human hepatic lipid and lipoprotein regulation. Resistin greatly increased hepatocyte VLDL apoB and lipid secretion because of MTP activation and induction of hepatocyte insulin resistance. Conversely, antibody removal of serum resistin ameliorated human serum stimulation of apoB secretion. Increased hepatic cellular lipids mediated by resistin reflects the fatty liver/steatosis observed with elevated resistin in humans. Thus, human resistin is a novel therapeutic target for mitigating common hepatic pathophysiological processes associated with human obesity, dyslipidemia and atherosclerosis.


Asunto(s)
Apolipoproteínas B/metabolismo , Insulina/metabolismo , Membranas Intracelulares/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Resistina/administración & dosificación , Transducción de Señal/efectos de los fármacos , Animales , Apolipoproteínas B/genética , Proteínas Portadoras/metabolismo , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Hígado Graso/etiología , Células Hep G2/efectos de los fármacos , Células Hep G2/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/fisiopatología , Ratones , ARN Mensajero/metabolismo , Ratas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Regulación hacia Arriba/efectos de los fármacos
5.
Mol Biochem Parasitol ; 151(1): 100-10, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17125854

RESUMEN

Parasites from the protozoan phylum Apicomplexa are responsible for diseases, such as malaria, toxoplasmosis and cryptosporidiosis, all of which have significantly higher rates of mortality and morbidity in economically underdeveloped regions of the world. Advances in vaccine development and drug discovery are urgently needed to control these diseases and can be facilitated by production of purified recombinant proteins from Apicomplexan genomes and determination of their 3D structures. To date, both heterologous expression and crystallization of Apicomplexan proteins have seen only limited success. In an effort to explore the effectiveness of producing and crystallizing proteins on a genome-scale using a standardized methodology, over 400 distinct Plasmodium falciparum target genes were chosen representing different cellular classes, along with select orthologues from four other Plasmodium species as well as Cryptosporidium parvum and Toxoplasma gondii. From a total of 1008 genes from the seven genomes, 304 (30.2%) produced purified soluble proteins and 97 (9.6%) crystallized, culminating in 36 crystal structures. These results demonstrate that, contrary to previous findings, a standardized platform using Escherichia coli can be effective for genome-scale production and crystallography of Apicomplexan proteins. Predictably, orthologous proteins from different Apicomplexan genomes behaved differently in expression, purification and crystallization, although the overall success rates of Plasmodium orthologues do not differ significantly. Their differences were effectively exploited to elevate the overall productivity to levels comparable to the most successful ongoing structural genomics projects: 229 of the 468 target genes produced purified soluble protein from one or more organisms, with 80 and 32 of the purified targets, respectively, leading to crystals and ultimately structures from one or more orthologues.


Asunto(s)
Genoma de Protozoos/genética , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Animales , Cristalización , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Plasmodium falciparum/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA