Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 202(8)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32041800

RESUMEN

The Gram-negative pathogen Neisseria gonorrhoeae (gonococcus [Gc]) colonizes lysozyme-rich mucosal surfaces. Lysozyme hydrolyzes peptidoglycan, leading to bacterial lysis. Gc expresses two proteins, SliC and NgACP, that bind and inhibit the enzymatic activity of lysozyme. SliC is a surface-exposed lipoprotein, while NgACP is found in the periplasm and also released extracellularly. Purified SliC and NgACP similarly inhibit lysozyme. However, whereas mutation of ngACP increases Gc susceptibility to lysozyme, the sliC mutant is only susceptible to lysozyme when ngACP is inactivated. In this work, we examined how lipidation contributes to SliC expression, cellular localization, and resistance of Gc to killing by lysozyme. To do so, we mutated the conserved cysteine residue (C18) in the N-terminal lipobox motif of SliC, the site for lipid anchor attachment, to alanine. SliC(C18A) localized to soluble rather than membrane fractions in Gc and was not displayed on the bacterial surface. Less SliC(C18A) was detected in Gc lysates compared to the wild-type protein. This was due in part to some release of the C18A mutant, but not wild-type, protein into the extracellular space. Surprisingly, Gc expressing SliC(C18A) survived better than SliC (wild type)-expressing Gc after exposure to lysozyme. We conclude that lipidation is not required for the ability of SliC to inhibit lysozyme, even though the lipidated cysteine is 100% conserved in Gc SliC alleles. These findings shed light on how members of the growing family of lysozyme inhibitors with distinct subcellular localizations contribute to bacterial defense against lysozyme.IMPORTANCENeisseria gonorrhoeae is one of many bacterial species that express multiple lysozyme inhibitors. It is unclear how inhibitors that differ in their subcellular localization contribute to defense from lysozyme. We investigated how lipidation of SliC, an MliC (membrane-bound lysozyme inhibitor of c-type lysozyme)-type inhibitor, contributes to its localization and lysozyme inhibitory activity. We found that lipidation was required for surface exposure of SliC and yet was dispensable for protecting the gonococcus from killing by lysozyme. To our knowledge, this is the first time the role of lipid anchoring of a lysozyme inhibitor has been investigated. These results help us understand how different lysozyme inhibitors are localized in bacteria and how this impacts resistance to lysozyme.


Asunto(s)
Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/metabolismo , Gonorrea/microbiología , Lipoproteínas/metabolismo , Muramidasa/antagonistas & inhibidores , Neisseria gonorrhoeae/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Inhibidores Enzimáticos/química , Gonorrea/enzimología , Interacciones Huésped-Patógeno , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Muramidasa/metabolismo , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/genética , Periplasma/genética , Periplasma/metabolismo , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 116(28): 14210-14215, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235565

RESUMEN

To establish infection, enteric pathogens integrate environmental cues to navigate the gastrointestinal tract (GIT) and precisely control expression of virulence determinants. During passage through the GIT, pathogens encounter relatively high levels of oxygen in the small intestine before transit to the oxygen-limited environment of the colon. However, how bacterial pathogens sense oxygen availability and coordinate expression of virulence traits is not resolved. Here, we demonstrate that enterohemorrhagic Escherichia coli O157:H7 (EHEC) regulates virulence via the oxygen-responsive small RNA DicF. Under oxygen-limited conditions, DicF enhances global expression of the EHEC type three secretion system, which is a key virulence factor required for host colonization, through the transcriptional activator PchA. Mechanistically, the pchA coding sequence (CDS) base pairs with the 5' untranslated region of the mRNA to sequester the ribosome binding site (RBS) and inhibit translation. DicF disrupts pchA cis-interactions by binding to the pchA CDS, thereby unmasking the pchA RBS and promoting PchA expression. These findings uncover a feed-forward regulatory pathway that involves distinctive mechanisms of RNA-based regulation and that provides spatiotemporal control of EHEC virulence.


Asunto(s)
Infecciones por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Oxígeno/metabolismo , ARN/genética , Factores de Transcripción/genética , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Escherichia coli O157/genética , Escherichia coli O157/patogenicidad , Tracto Gastrointestinal/microbiología , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Ribosomas/genética , Virulencia/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...