Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 289(1982): 20221214, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100016

RESUMEN

Amniotes have been a major component of marine trophic chains from the beginning of the Triassic to present day, with hundreds of species. However, inferences of their (palaeo)ecology have mostly been qualitative, making it difficult to track how dietary niches have changed through time and across clades. Here, we tackle this issue by applying a novel geometric morphometric protocol to three-dimensional models of tooth crowns across a wide range of raptorial marine amniotes. Our results highlight the phenomenon of dental simplification and widespread convergence in marine amniotes, limiting the range of tooth crown morphologies. Importantly, we quantitatively demonstrate that tooth crown shape and size are strongly associated with diet, whereas crown surface complexity is not. The maximal range of tooth shapes in both mammals and reptiles is seen in medium-sized taxa; large crowns are simple and restricted to a fraction of the morphospace. We recognize four principal raptorial guilds within toothed marine amniotes (durophages, generalists, flesh cutters and flesh piercers). Moreover, even though all these feeding guilds have been convergently colonized over the last 200 Myr, a series of dental morphologies are unique to the Mesozoic period, probably reflecting a distinct ecosystem structure.


Asunto(s)
Ecosistema , Diente , Animales , Evolución Biológica , Conducta Alimentaria , Mamíferos , Reptiles , Diente/anatomía & histología
2.
Anat Rec (Hoboken) ; 305(10): 2557-2582, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34679248

RESUMEN

Eopneumatosuchus colberti Crompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolution, relatively little is known about this taxon. Here, we redescribe the external cranial morphology of E. colberti, present novel information on its endocranial anatomy, evaluate its phylogenetic position among early crocodylomorphs, and seek to better characterize its ecology. Our examination clarifies key aspects of cranial suture paths and braincase anatomy. Comparisons with related taxa (e.g., Protosuchus haughtoni) demonstrate that extreme pneumaticity of the braincase may be more widespread in protosuchids than previously appreciated. Computed tomography scans reveal an endocranial morphology that resembles that of other early crocodylomorphs, in particular the noncrocodyliform crocodylomorph Almadasuchus figarii. There are, however, key differences in olfactory bulb and cerebral hemisphere morphology, which demonstrate the endocranium of crocodylomorphs is not as conserved as previously hypothesized. Our phylogenetic analysis recovers E. colberti as a close relative of Protosuchus richardsoni and Edentosuchus tienshanensis, contrasting with previous hypotheses of a sister group relationship with Thalattosuchia. Previous work suggested the inner ear has some similarities to semi-aquatic crocodyliforms, but the phylogenetic placement of E. colberti among protosuchids with a terrestrial postcranial skeletal morphology complicates paleoecological interpretation.


Asunto(s)
Fósiles , Osteología , Evolución Biológica , Filogenia , Cráneo/anatomía & histología
3.
BMC Ecol Evol ; 21(1): 202, 2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742237

RESUMEN

BACKGROUND: Dinosaurs dominated terrestrial environments for over 100 million years due in part to innovative feeding strategies. Although a range of dental adaptations was present in Late Jurassic dinosaurs, it is unclear whether dinosaur ecosystems exhibited patterns of tooth disparity and dietary correlation similar to those of modern amniotes, in which carnivores possess simple teeth and herbivores exhibit complex dentitions. To investigate these patterns, we quantified dental shape in Late Jurassic dinosaurs to test relationships between diet and dental complexity. RESULTS: Here, we show that Late Jurassic dinosaurs exhibited a disparity of dental complexities on par with those of modern saurians. Theropods possess relatively simple teeth, in spite of the range of morphologies tested, and is consistent with their inferred carnivorous habits. Ornithischians, in contrast, have complex dentitions, corresponding to herbivorous habits. The dentitions of macronarian sauropods are similar to some ornithischians and living herbivorous squamates but slightly more complex than other sauropods. In particular, all diplodocoid sauropods investigated possess remarkably simple teeth. The existence of simple teeth in diplodocoids, however, contrasts with the pattern observed in nearly all known herbivores (living or extinct). CONCLUSIONS: Sauropod dinosaurs exhibit a novel approach to herbivory not yet observed in other amniotes. We demonstrate that sauropod tooth complexity is related to tooth replacement rate rather than diet, which contrasts with the results from mammals and saurians. This relationship is unique to the sauropod clade, with ornithischians and theropods displaying the patterns observed in other groups. The decoupling of herbivory and tooth complexity paired with a correlation between complexity and replacement rate demonstrates a novel evolutionary strategy for plant consumption in sauropod dinosaurs.


Asunto(s)
Dinosaurios , Diente , Animales , Ecosistema , Herbivoria , Filogenia , Diente/anatomía & histología
4.
PLoS One ; 16(9): e0257427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34506601

RESUMEN

Squamates are ideal subjects for investigating relationships between diet and dental patterns because they exhibit wide dietary diversity, marked variation in dental shape, and are taxonomically abundant. Despite this, well-established links between diet and dental morphology are primarily qualitative in nature, with specific patterns of squamate dental complexity remaining largely unknown. Here, we use quantitative methods and a broad taxonomic dataset to quantify key patterns in squamate dental morphology, including re-examining the relationship between dentition and diet, testing for differences in complexity between dentigerous elements, and exploring the effect of ontogenetic dietary shifts in dental complexity in two iguanid genera. Our findings support previous research by demonstrating that species consuming more plant material possess more complex teeth. We did not find significant complexity differences between the left and right dentigerous elements nor the upper and lower jaws, with the exception of Amblyrhynchus cristatus, the marine iguana, which possesses significantly more complex dentary teeth than premaxillary and maxillary teeth. We find discordant patterns when testing for dental complexity changes through ontogeny. Amblyrhynchus, which is primarily herbivorous throughout its lifetime, increases dental complexity through ontogeny, whereas Ctenosaura, which is generally insectivorous as juveniles and herbivorous as adults, decreases dental complexity. Although preliminary, this research documents and quantifies novel patterns of squamate dental complexity and exhibits the possibilities for further research on the diversity of squamate dental morphology.


Asunto(s)
Dentición , Dieta , Lagartos/anatomía & histología , Lagartos/fisiología , Diente/anatomía & histología , Animales , Tracto Gastrointestinal , Herbivoria , Maxilares/anatomía & histología , Mandíbula/anatomía & histología , Maxilar/anatomía & histología , Especificidad de la Especie
5.
R Soc Open Sci ; 8(9): 202145, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34540239

RESUMEN

Cranial morphology is remarkably varied in living amniotes and the diversity of shapes is thought to correspond with feeding ecology, a relationship repeatedly demonstrated at smaller phylogenetic scales, but one that remains untested across amniote phylogeny. Using a combination of morphometric methods, we investigate the links between phylogenetic relationships, diet and skull shape in an expansive dataset of extant toothed amniotes: mammals, lepidosaurs and crocodylians. We find that both phylogeny and dietary ecology have statistically significant effects on cranial shape. The three major clades largely partition morphospace with limited overlap. Dietary generalists often occupy clade-specific central regions of morphospace. Some parallel changes in cranial shape occur in clades with distinct evolutionary histories but similar diets. However, members of a given clade often present distinct cranial shape solutions for a given diet, and the vast majority of species retain the unique aspects of their ancestral skull plan, underscoring the limits of morphological convergence due to ecology in amniotes. These data demonstrate that certain cranial shapes may provide functional advantages suited to particular dietary ecologies, but accounting for both phylogenetic history and ecology can provide a more nuanced approach to inferring the ecology and functional morphology of cryptic or extinct amniotes.

6.
Curr Biol ; 29(14): 2389-2395.e3, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31257139

RESUMEN

Extinct crocodyliforms from the age of dinosaurs (Mesozoic Era) display an impressive range of skeletal morphologies, suggesting a diversity of ecological roles not found in living representatives [1-6]. In particular, unusual dental morphologies develop repeatedly through the evolutionary history of this group [2, 4-9]. Recent descriptions of fossil crocodyliforms and their unusual teeth provide the inferential basis for a wide range of feeding ecologies. However, tests of these hypotheses are hindered by the lack of directly comparable dental morphologies in living reptiles and mammals, thereby preventing an accurate ecosystem reconstruction. Here, we demonstrate, using a combination of the orientation patch count rotated method and discrete morphological features, that Mesozoic crocodyliforms exploited a much greater range of feeding ecologies than their extant relatives, including likely omnivores and herbivores. These results also indicate that crocodyliforms independently developed high-complexity dentitions a minimum of three times. Some taxa possess teeth that surpass the complexities of living herbivorous lizards and rival those of omnivorous and herbivorous mammals. This study indicates that herbivorous crocodyliforms were more common than previously thought and were present throughout the Mesozoic and on most continents. The occurrence of multiple origins of complex dentitions throughout Crocodyliformes indicates that herbivory was a beneficial dietary strategy and not a unique occurrence. Many of these crocodyliforms lived alongside omnivorous or herbivorous synapsids, illustrating an ecological partition that is not observed today.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Evolución Biológica , Fósiles/anatomía & histología , Herbivoria , Caimanes y Cocodrilos/fisiología , Animales
7.
J Morphol ; 278(4): 500-522, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28145089

RESUMEN

Living saurian reptiles exhibit a wide range of diets, from carnivores to strict herbivores. Previous research suggests that the tooth shape in some lizard clades correlates with diet, but this has not been tested using quantitative methods. I investigated the relationship between phenotypic tooth complexity and diet in living reptiles by examining the entire dentary tooth row in over 80 specimens comprising all major dentigerous saurian clades. I quantified dental complexity using orientation patch count rotated (OPCR), which discriminates diet in living and extinct mammals, where OPCR-values increase with the proportion of dietary plant matter. OPCR was calculated from high-resolution CT-scans, and I standardized OPCR-values by the total number of teeth to account for differences in tooth count across taxa. In contrast with extant mammals, there appears to be greater overlap in tooth complexity values across dietary groups because multicusped teeth characterize herbivores, omnivores, and insectivores, and because herbivorous skinks have relatively simple teeth. In particular, insectivorous lizards have dental complexities that are very similar to omnivores. Regardless, OPCR-values for animals that consume significant amounts of plant material are higher than those of carnivores, with herbivores having the highest average dental complexity. These results suggest reptilian tooth complexity is related to diet, similar to extinct and extant mammals, although phylogenetic history also plays a measurable role in dental complexity. This has implications for extinct amniotes that display a dramatic range of tooth morphologies, many with no modern analogs, which inhibits detailed dietary reconstructions. These data demonstrate that OPCR, when combined with additional morphological data, has the potential to be used to reconstruct the diet of extinct amniotes. J. Morphol. 278:500-522, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Dieta , Lagartos/anatomía & histología , Diente/anatomía & histología , Animales , Conducta Alimentaria , Mandíbula/anatomía & histología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...