Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomedicine (Lond) ; 16(17): 1505-1518, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34189952

RESUMEN

Background: Nanotechnology is a promising strategy to improve existing antileishmanial agents. Objective: To explore the evidence of encapsulated meglumine antimoniate for cutaneous leishmaniasis treatment in animal models. Materials & methods: The studies were recovered from PubMed, Scopus, EMBASE, LILACS, WoS and Google according to eligibility criteria following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population, Intervention, Comparison, Outcomes and Study design (PICOS) strategy. Study appraisal was assessed using the Animal Research Reporting of In Vivo Experiments, SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) and Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations. Results: Five studies were included. Liposomes, metallic and polymeric nanoparticles were tested in BALB/c mice against Leishmania major, L. tropica or L. amazonensis. Limitations: Few studies were found to meet the eligibility criteria. Conclusion: All formulations had a significant efficacy, similar to the meglumine antimoniate reference treatment concerning the lesion size and parasite burden. The studies had a high and moderate risk of bias, and the confidence in cumulative evidence was considered low. Therefore, we encourage the development of high-quality preclinical studies. Registration: PROSPERO register CRD42020170191.


Asunto(s)
Antiprotozoarios , Leishmaniasis Cutánea , Nanopartículas , Animales , Antiprotozoarios/uso terapéutico , Leishmaniasis Cutánea/tratamiento farmacológico , Antimoniato de Meglumina , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA