Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mov Disord ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576116

RESUMEN

BACKGROUND: FRMD5 variants were recently identified in patients with developmental delay, ataxia, and eye movement abnormalities. OBJECTIVES: We describe 2 patients presenting with childhood-onset ataxia, nystagmus, and seizures carrying pathogenic de novo FRMD5 variants. Weighted gene co-expression network analysis (WGCNA) was performed to gain insights into the function of FRMD5 in the brain. METHODS: Trio-based whole-exome sequencing was performed in both patients, and CoExp web tool was used to conduct WGCNA. RESULTS: Both patients presented with developmental delay, childhood-onset ataxia, nystagmus, and seizures. Previously unreported findings were diffuse choreoathetosis and dystonia of the hands (patient 1) and areas of abnormal magnetic resonance imaging signal in the white matter (patient 2). WGCNA showed that FRMD5 belongs to gene networks involved in neurodevelopment and oligodendrocyte function. CONCLUSIONS: We expanded the phenotype of FRMD5-related disease and shed light on its role in brain function and development. We recommend including FRMD5 in the genetic workup of childhood-onset ataxia and nystagmus. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
medRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38529492

RESUMEN

Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's (GP2) Monogenic Network took a different approach by targeting PD centers not yet represented in the medical literature. Here, we describe combining both efforts in a "merger project" resulting in a global monogenic PD cohort with build-up of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expression of monogenic PD. This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results.

7.
Neuron ; 111(23): 3775-3788.e7, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37716354

RESUMEN

Parkin-mediated mitophagy has been studied extensively, but whether mutations in parkin contribute to Parkinson's disease pathogenesis through alternative mechanisms remains unexplored. Using patient-derived dopaminergic neurons, we found that phosphorylation of parkin by Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) at Ser9 leads to activation of parkin in a neuronal-activity-dependent manner. Activated parkin ubiquitinates synaptojanin-1, facilitating its interaction with endophilin A1 and synaptic vesicle recycling. Neurons from PD patients with mutant parkin displayed defective recycling of synaptic vesicles, leading to accumulation of toxic oxidized dopamine that was attenuated by boosting endophilin A1 expression. Notably, combined heterozygous parkin and homozygous PTEN-induced kinase 1 (PINK1) mutations led to earlier disease onset compared with homozygous mutant PINK1 alone, further underscoring a PINK1-independent role for parkin in contributing to disease. Thus, this study identifies a pathway for selective activation of parkin at human dopaminergic synapses and highlights the importance of this mechanism in the pathogenesis of Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Humanos , Neuronas Dopaminérgicas/metabolismo , Mutación , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Vesículas Sinápticas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Mov Disord ; 38(10): 1914-1924, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37485550

RESUMEN

BACKGROUND: Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE: We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS: We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS: We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS: Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , MicroARNs , Trastornos del Movimiento , Adolescente , Niño , Humanos , Distonía/genética , Trastornos Distónicos/genética , Haploinsuficiencia/genética , MicroARNs/genética , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas/genética , Temblor
9.
Mov Disord ; 38(8): 1527-1535, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37310233

RESUMEN

BACKGROUND: There is growing clinical and research utilization of genetic testing in Parkinson's disease (PD), including direct-to-consumer testing. OBJECTIVES: The aim is to determine the international landscape of genetic testing in PD to inform future worldwide recommendations. METHODS: A web-based survey assessing current practices, concerns, and barriers to genetic testing and counseling was administered to the International Parkinson and Movement Disorders Society membership. RESULTS: Common hurdles across sites included cost and access to genetic testing, and counseling, as well as education on genetic counseling. Region-dependent differences in access to and availability of testing and counseling were most notable in Africa. High-income countries also demonstrated heterogeneity, with European nations more likely to have genetic testing covered through insurance than Pan-American and Asian countries. CONCLUSIONS: This survey highlights not only diversity of barriers in different regions but also the shared and highly actionable needs for improved education and access to genetic counseling and testing for PD worldwide. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/psicología , Pruebas Genéticas , Consejo
10.
Mov Disord ; 38(8): 1384-1396, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37365908

RESUMEN

Genetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Pruebas Genéticas
11.
Cells ; 12(7)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37048120

RESUMEN

The human dopaminergic system is vital for a broad range of neurological processes, including the control of voluntary movement. Here we report a proband presenting with clinical features of dopamine deficiency: severe infantile parkinsonism-dystonia, characterised by frequent oculogyric crises, dysautonomia and global neurodevelopmental impairment. CSF neurotransmitter analysis was unexpectedly normal. Triome whole-genome sequencing revealed a homozygous variant (c.110C>A, (p.T37K)) in DRD1, encoding the most abundant dopamine receptor (D1) in the central nervous system, most highly expressed in the striatum. This variant was absent from gnomAD, with a CADD score of 27.5. Using an in vitro heterologous expression system, we determined that DRD1-T37K results in loss of protein function. Structure-function modelling studies predicted reduced substrate binding, which was confirmed in vitro. Exposure of mutant protein to the selective D1 agonist Chloro APB resulted in significantly reduced cyclic AMP levels. Numerous D1 agonists failed to rescue the cellular defect, reflected clinically in the patient, who had no benefit from dopaminergic therapy. Our study identifies DRD1 as a new disease-associated gene, suggesting a crucial role for the D1 receptor in motor control.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedad de Parkinson , Humanos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Trastornos Distónicos/genética
12.
Brain ; 146(7): 2730-2738, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36860166

RESUMEN

ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.


Asunto(s)
Distonía , Trastornos Distónicos , Humanos , Distonía/genética , Trastornos Distónicos/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación Missense , Linaje , Proteínas/genética
13.
Mov Disord ; 38(2): 347-353, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36420574

RESUMEN

BACKGROUND: Heterozygous NKX2-1 loss-of-function variants cause combinations of hyperkinetic movement disorders (MDs, particularly childhood-onset chorea), pulmonary dysfunction, and hypothyroidism. Mobile element insertions (MEIs) are potential disease-causing structural variants whose detection in routine diagnostics remains challenging. OBJECTIVE: To establish the molecular diagnosis of two first-degree relatives with clinically suspected NKX2-1-related disorder who had negative NKX2-1 Sanger (SS), whole-exome (WES), and whole-genome (WGS) sequencing. METHODS: The proband's WES was analyzed for MEIs. A candidate MEI in NKX2-1 underwent optimized SS after plasmid cloning. Functional studies exploring NKX2-1 haploinsufficiency at RNA and protein levels were performed. RESULTS: A 347-bp AluYa5 insertion with a 65-bp poly-A tail followed by a 16-bp duplication of the pre-insertion wild-type sequence in exon 3 of NKX2-1 (ENST00000354822.7:c.556_557insAlu541_556dup) segregated with the disease phenotype. CONCLUSIONS: We identified a de novo exonic AluYa5 insertion causing NKX2-1-related disorder in SS/WES/WGS-negative cases, suggesting that MEI analysis of short-read sequencing data or targeted long-read sequencing could unmask the molecular diagnosis of unsolved MD cases. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Corea , Humanos , Corea/genética , Fenotipo , Exones , Exoma , Mutación
14.
Clin Genet ; 103(1): 103-108, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36071510

RESUMEN

Keppen-Lubinsky syndrome is caused by pathogenic variants in KCNJ6, which encodes the inwardly rectifying channel subfamily J6. The four confirmed cases reported to date were characterized by severe intellectual disability, global developmental delay, feeding difficulties, and dysmorphic features. All but one of the cases also had a severe form of lipodystrophy, resulting in tightly adherent facial skin and appearance of premature aging. Here, we describe a 36-year-old female with a de novo pathogenic variant in KCNJ6 (NM_002240.5: c.460G>T; p.(Gly154Cys)) presenting with mild intellectual disability, subtle dysmorphic features, obsessive-compulsive disorder, and an exaggerated startle response. This case indicates that KCNJ6-related disorders should be considered in patients with less pronounced dysmorphic features and milder cognitive impairment, as well as in patients with startle disorders.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Reflejo de Sobresalto , Humanos , Reflejo de Sobresalto/genética
15.
Parkinsonism Relat Disord ; 105: 7-8, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36323131

RESUMEN

We describe a case of young onset generalized dystonia, harboring a previously unreported likely pathogenic THAP1 missense variant (c.109 G > A; p.Glu37Lys) that was inherited from her unaffected father. Moreover, we report a positive effect of deep brain stimulation, particularly on the cervical component of dystonia.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Femenino , Humanos , Distonía/genética , Distonía/terapia , Proteínas Nucleares/genética , Penetrancia , Proteínas de Unión al ADN/genética , Mutación , Proteínas Reguladoras de la Apoptosis/genética , Trastornos Distónicos/genética , Trastornos Distónicos/terapia
16.
Parkinsonism Relat Disord ; 104: 88-90, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36274328

RESUMEN

Bi-allelic mutations in FBXO7 are classically associated with a complex phenotype, known as parkinsonian-pyramidal syndrome. We describe two brothers affected by typical early onset Parkinson's disease (EOPD), who carry novel compound heterozygous variants in FBXO7. Our report highlights that typical EOPD can be part of an expanding FBXO7-related phenotype.


Asunto(s)
Proteínas F-Box , Enfermedad de Parkinson , Masculino , Humanos , Enfermedad de Parkinson/genética , Proteínas F-Box/genética , Fenotipo , Mutación/genética , Alelos , Edad de Inicio
18.
Mov Disord ; 37(1): 137-147, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596301

RESUMEN

BACKGROUND: Monogenic causes of isolated dystonia are heterogeneous. Assembling cohorts of affected individuals sufficiently large to establish new gene-disease relationships can be challenging. OBJECTIVE: We sought to expand the catalogue of monogenic etiologies for isolated dystonia. METHODS: After the discovery of a candidate variant in a multicenter exome-sequenced cohort of affected individuals with dystonia, we queried online platforms and genomic data repositories worldwide to identify subjects with matching genotypic profiles. RESULTS: Seven different biallelic loss-of-function variants in AOPEP were detected in five probands from four unrelated families with strongly overlapping phenotypes. In one proband, we observed a homozygous nonsense variant (c.1477C>T [p.Arg493*]). A second proband harbored compound heterozygous nonsense variants (c.763C>T [p.Arg255*]; c.777G>A [p.Trp259*]), whereas a third proband possessed a frameshift variant (c.696_697delAG [p.Ala234Serfs*5]) in trans with a splice-disrupting alteration (c.2041-1G>A). Two probands (siblings) from a fourth family shared compound heterozygous frameshift alleles (c.1215delT [p.Val406Cysfs*14]; c.1744delA [p.Met582Cysfs*6]). All variants were rare and expected to result in truncated proteins devoid of functionally important amino acid sequence. AOPEP, widely expressed in developing and adult human brain, encodes a zinc-dependent aminopeptidase, a member of a class of proteolytic enzymes implicated in synaptogenesis and neural maintenance. The probands presented with disabling progressive dystonia predominantly affecting upper and lower extremities, with variable involvement of craniocervical muscles. Dystonia was unaccompanied by any additional symptoms in three families, whereas the fourth family presented co-occurring late-onset parkinsonism. CONCLUSIONS: Our findings suggest a likely causative role of predicted inactivating biallelic AOPEP variants in cases of autosomal recessive dystonia. Additional studies are warranted to understand the pathophysiology associated with loss-of-function variation in AOPEP. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Aminopeptidasas , Distonía , Trastornos Distónicos , Mutación con Pérdida de Función , Aminopeptidasas/genética , Distonía/genética , Trastornos Distónicos/genética , Exoma , Humanos , Mutación , Linaje , Fenotipo
19.
Mov Disord ; 36(10): 2225-2243, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34155691

RESUMEN

Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of the cyclic nucleotides cyclic adenosine monophosphate and cyclic guanosine monophosphate, which act as intracellular second messengers for many signal transduction pathways in the central nervous system. Several classes of PDE enzymes with specific tissue distributions and cyclic nucleotide selectivity are highly expressed in brain regions involved in cognitive and motor functions, which are known to be implicated in neurodegenerative diseases, such as Parkinson's disease and Huntington's disease. The indication that PDEs are intimately involved in the pathophysiology of different movement disorders further stems from recent discoveries that mutations in genes encoding different PDEs, including PDE2A, PDE8B, and PDE10A, are responsible for rare forms of monogenic parkinsonism and chorea. We here aim to provide a translational overview of the preclinical and clinical data on PDEs, the role of which is emerging in the field of movement disorders, offering a novel venue for a better understanding of their pathophysiology. Modulating cyclic nucleotide signaling, by either acting on their synthesis or on their degradation, represents a promising area for development of novel therapeutic approaches. The study of PDE mutations linked to monogenic movement disorders offers the opportunity of better understanding the role of PDEs in disease pathogenesis, a necessary step to successfully benefit the treatment of both hyperkinetic and hypokinetic movement disorders. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Hidrolasas Diéster Fosfóricas , 3',5'-AMP Cíclico Fosfodiesterasas , AMP Cíclico , GMP Cíclico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2 , Humanos , Hidrolasas Diéster Fosfóricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...