Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(34): 36398-36410, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220507

RESUMEN

One-component epoxy resins (OCERs) with improved stability (shelf life) and controlled curing temperatures were prepared using epoxy resins and polyoxazoline-imidazole (POZ-Im) based thermal latent curing agents (TLCs). POZ homopolymers with molar masses of 1000, 2000, and 5000 g/mol were obtained via cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazoline, 2-propyl-2-oxazoline, 2-pentyl-2-oxazoline, and 2-phenyl-2-oxazoline. TLCs were prepared by physically entrapping imidazole, the curing agent, in the POZ matrix at the homopolymer/Im (HP/Im) ratios of 1:1 and 5:1 and characterized by FTIR and TGA. TLCs were then mixed with bisphenol A diglycidyl ether (DGEBA) to obtain OCERs with Im concentrations of 1, 3, and 5 wt %. Dynamic DSC tests were performed to determine the effect of the pendant group and molar mass of POZ, the POZ/Im ratio, and Im concentration on the curing behavior of the OCERs, whereas isothermal DSC tests were carried out to examine their thermal stability and optimal curing temperatures. Optical microscopy was performed to study the compatibility of the TLCs with DGEBA. This study showed that the dispersion quality of TLCs is highly associated with the compatibility of POZs and DGEBA, which affected the release of Im, thus left limit temperatures of curing. In addition, higher left limit temperatures were obtained when the POZ/Im ratio increased. Isothermal DSC results conformed to the improved stability and better thermal latency of the samples with a POZ/Im ratio of 5:1. Moreover, the higher left limit temperatures were obtained with the lowest molar mass of POZ due to the better interaction between the -OH end group of POZ and Im. The shelf life of PEOZ 1K-Im 5:1 1% OCER was predicted at -20, 0, and 20 °C, with an estimated 15.3 days at 20 °C using isothermal DSC and rheology at 50, 60, and 70 °C. Overall, this research contributes to the development of OCERs by introducing POZ-Im complexes as novel TLCs. The findings shed light on the importance of compatibility in achieving optimal dispersion and release of Im and the role of the POZ/Im ratio and POZ molar mass in controlling left limit temperatures, ultimately influencing the curing behavior of OCERs.

2.
ACS Omega ; 8(49): 47173-47186, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107921

RESUMEN

One-component epoxy resins (OCERs) are proposed to overcome the energy inefficiency and processing difficulties of conventional two-component epoxy resins by employing latent curing agents, specifically thermal latent curing agents (TLCs). Despite recent progress, the need for TLCs with a simple preparation method for different curing agents, epoxy resins, and process conditions remains. Here, tailorable TLCs were prepared by forming complexes between imidazole (Im) and amphiphilic polyoxazoline copolymers with tunable structures and properties by a solvent evaporation method. The obtained TLCs were manually mixed with DGEBA to prepare OCERs. The miscibility of the complexes with DGEBA was studied, considering the functionalities of copolymers. The curing behaviors of TLCs were compared using dynamic Differential Scanning Calorimetry (DSC) studies considering the side chain and composition of the copolymers, copolymer:Im ratio, and concentration of Im in DGEBA. The curing behavior of the promising OCERs was studied by isothermal DSC studies to investigate their stability at different temperatures and curing rate at elevated temperatures revealing the stability of these OCERs.

3.
ACS Appl Energy Mater ; 6(7): 4053-4064, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37064412

RESUMEN

Poly(ethylene oxide) (PEO)-based polymer electrolytes are a promising class of materials for use in lithium-ion batteries due to their high ionic conductivity and flexibility. In this study, the effects of polymer architecture including linear, star, and hyperbranched and salt (lithiumbis(trifluoromethanesulfonyl)imide (LiTFSI)) concentration on the glass transition (T g), microstructure, phase diagram, free volume, and bulk viscosity, all of which play a significant role in determining the ionic conductivity of the electrolyte, have been systematically studied for PEO-based polymer electrolytes. The branching of PEO widens the liquid phase toward lower salt concentrations, suggesting decreased crystallization and improved ion coordination. At high salt loadings, ion clustering is common for all electrolytes, yet the cluster size and distribution appear to be strongly architecture-dependent. Also, the ionic conductivity is maximized at a salt concentration of [Li/EO ≈ 0.085] for all architectures, and the highly branched polymers displayed as much as three times higher ionic conductivity (with respect to the linear analogue) for the same total molar mass. The architecture-dependent ionic conductivity is attributed to the enhanced free volume measured by positron annihilation lifetime spectroscopy. Interestingly, despite the strong architecture dependence of ionic conductivity, the salt addition in the highly branched architectures results in accelerated yet similar monomeric friction coefficients for these polymers, offering significant potential toward decoupling of conductivity from segmental dynamics of polymer electrolytes, leading to outstanding battery performance.

4.
Water Sci Technol ; 87(6): 1529-1541, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37001163

RESUMEN

Wastewater from the textile industry contains high concentrations of pollutants, so the wastewater must be treated before it is discharged. In addition, the reuse of treated wastewater should be considered from an environmental point of view, as large volumes of wastewater are produced. Since textile wastewater mainly contains dyestuffs, it must be treated effectively using environmentally friendly technologies. Membrane processes are widely used in textile wastewater treatment as they have distinct advantages over conventional wastewater treatment methods. This study reports the pilot-scale manufacturing and characterization of three different NF membranes. Three different types of membranes were fabricated. The fabricated membranes were compared through characterization by surface properties, chemical structure and morphology. Membranes were tested for pure water flux. Then the synthetic wastewater (SWW) was tested for flux and rejection. Lastly, the textile wastewater was tested. The textile wastewater flux of pure piperazine (PIP), 60% S-DADPS and 0.04% halloysite nanotubes (HNTs) were 22.42, 79.58 and 40.06 L m-2 h-1. It has been proven that the 60% s-DADPS membrane provides up to four times improvement in wastewater flux and simultaneously. In addition, NF membranes produced using HNT and sDADPS on a pilot scale have brought innovation to the literature with the good results obtained.


Asunto(s)
Nanotubos , Purificación del Agua , Aguas Residuales , Arcilla , Membranas Artificiales , Filtración , Purificación del Agua/métodos , Industria Textil , Textiles
5.
ACS Omega ; 7(44): 40067-40077, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36385860

RESUMEN

Poly(2-oxazoline)s (POZs) are widely investigated for their applications in various fields due to their unique properties. To exploit and combine different characteristics of the POZ family, 2-oxazoline monomers can be copolymerized to prepare tailor-made copolymers with the desired glass transition temperature (T g), melting temperature (T m), amphiphilicity, and functionality. Here, we report the synthesis and characterization of 2-oxazoline monomers and a range of POZ copolymers produced, thereof. 2-Propyl-2-oxazoline (PrOZ) and 2-pentyl-2-oxazoline (PeOZ) monomers were synthesized by two different methods starting from nitriles or carboxylic acids. A number of POZ copolymers were synthesized by copolymerization of 2-ethyl-2-oxazoline (EOZ) with either one of PrOZ, PeOZ, or 2-phenyl-2-oxazoline (PhOZ) at three different compositions (25:75, 50:50, and 75:25) and three molecular weights (1000, 2000, and 5000 Da). The successful synthesis of the monomers and copolymers was demonstrated through their structural analysis by 1H NMR and FTIR. SEC results confirmed the targeted molar masses of the copolymers and living nature of the polymerization by showing low dispersity values. Thermal properties of the copolymers were studied using DSC and TGA. DSC studies revealed the amorph and random state of the copolymers with obtained T g values for the copolymers in the range of -3 to 84 °C depending on their molecular weight and type of the side chain. While the presence of longer aliphatic side chains resulted in lower T g values, the presence of 2-phenyl substituents on the polymer led to higher T g values. The decomposition temperatures determined by TGA were in the range of 328 to 383 °C depending on the molecular weight, composition, and side chain of the copolymers. It was observed that higher molecular weights led to higher T g values and decomposition temperatures. While copolymers with aliphatic side chains exhibited a single-step decomposition profile, the decomposition of copolymers having aromatic side chains occurred in multiple steps. The variations in the molecular weight, composition, and side chains of the copolymers resulted in a library of tailorable amphiphilic copolymers suitable for multiple applications ranging from biomedical applications to composite manufacturing.

6.
ACS Omega ; 7(24): 20486-20494, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35755356

RESUMEN

Superabsorbent polymers (SAPs) are useful polymers in a wide range of application fields ranging from the hygiene industry to construction and agriculture. As versatility and high water absorption capacity are their important merits, SAPs usually suffer from low water retention capacity (fast release) and weak mechanical properties. To address these drawbacks, a set of new superabsorbent polymer-Halloysite nanotube (HNT) nanocomposites was synthesized via free radical polymerization of acrylamide, 2-acrylamido-2-methylpropane-1-sulfonic acid, and acrylic acid in the presence of vinyltrimethoxysilane (VTMS) as the crosslinker. FTIR and TGA characterizations confirm the polymerization of SAP and successful incorporation of HNTs into the SAP polymer matrix. The effect of the HNT nanofiller amount in the nanocomposite polymer matrix was investigated with swelling-release performance tests, crosslink density calculations, and rheology measurements. It was found that equilibrium swelling ratios are correlated and therefore can be tuned via the crosslink densities of nanocomposites, while water retention capacities are governed by storage moduli. A maximum swelling of 537 g/g was observed when 5 wt % HNT was incorporated, in which the crosslink density is the lowest. Among the SAP nanocomposites prepared, the highest storage modulus was observed when 1 wt % of nanofiller was incorporated, which coincides with the nanocomposite with the longest water retention. The water release duration of SAPs was prolonged up to 27 days with 1% HNT addition in parallel with the achieved maximum storage modulus. Finally, three different incorporation mechanisms of the HNT nanofiller into the SAP nanocomposite structure were proposed and confirmed with rheology measurements. This study provides a rapid synthesis method for SAP nanocomposites with enhanced water retention capacities and explains the relationship between swelling and crosslink density and water retention and mechanical properties of SAP nanocomposites.

7.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800179

RESUMEN

Rice husk ash (RHA) having a porous sructure and a high amount of amorphous silica nanoparticles (4 nm) decorated on the surface of carbon nanosheets is a suitable and cheap candidate for the use of a grout additive. In this study, neat RHA and functionalized RHA (f-RHA) with three different loadings were successfully incorporated into the cement-bentonite based grouts by adjusting the water to cement ratio. The workability of the developed grouts having RHA-based additives was analyzed in terms of bleeding, density, flow spread, and Marsh cone time. Additionally, the thermal and prolongation of hydration performances of the cementitious grout were enriched by successful attachment of amino-silane functional groups on the RHA surface. The heat of hydration performances of RHA and functionalized RHA introduced cementitious grout composite were assessed by isothermal calorimetry tests, and especially the kinetics of hydration was increased by the addition of RHA. The presence of amino silane groups in f-RHA intensified the heat adsorption by reacting with cement constituents, and thus resulted in the retardation and reduction in the heat flow. Therefore, using an amino-silane coupling agent increased the induction period and hindered the heat of hydration compared to the reference grout. On the other hand, the incorporation of RHA and f-RHA into the cement matrix did not affect the thermal conductivity of the grouts.

8.
Nanomaterials (Basel) ; 11(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802645

RESUMEN

The morphology of nanostructures is a vital parameter to consider in components comprised of materials exhibiting specific functionalities. The number of process steps and the need for high temperatures can often be a limiting factor when targeting a specific morphology. Here, we demonstrate a repeatable synthesis of different morphologies of a highly crystalline monoclinic phase of vanadium dioxide (VO2(M)) using a one-step hydrothermal method. By adjusting the synthesis parameters, such as pH, temperature, and reducing agent concentration in the precursor, VO2 nanostructures with high uniformity and crystallinity are achieved. Some of these morphologies were obtained via the choice of the reducing agent that allowed us to skip the annealing step. Our results indicate that the morphologies of the nanostructures are very sensitive to the hydrazine hydrate (N2H4.H2O) concentration. Another reducing agent, dodecylamine, was used to achieve well-organized and high-quality VO2(M) nanotubes. Differential scanning calorimetry (DSC) experiments revealed that all samples display the monoclinic-to-tetragonal structural transition (MTST) regardless of the morphology, albeit at different temperatures that can be interpreted as the variations in overheating and undercooling limits. VO2(M) structures with a higher surface to volume ratio exhibit a higher overheating limit than those with low ratios.

9.
Water Sci Technol ; 83(2): 271-283, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33504693

RESUMEN

In this paper, ultrafiltration (UF) flat sheet membranes were manufactured by introducing two diverse halloysite nanotubes (HNT) size (5 µm and 63 µm) and five different (0, 0.63, 1.88, 3.13, 6.30 wt %) ratios by wet phase inversion. Some characterization methods which are contact angle, zeta potential, viscosity, scanning electron microscopy (SEM) and Young's modulus measurements were used for ultrafiltration membranes. Synthetic dye waters which were Setazol Red and Reactive Orange were used for filtration performance tests. These dye solutions were filtered in three different pH conditions and three different temperature conditions for pH and temperature resistance to understand how flux and removal efficiency change. The best water permeability results were obtained as 190.5 LMH and 192 LMH, for halloysite nanotubes (HNT) sizes of 5 µm and 63 µm respectively. The best water and dye performance of UF membrane contains 1.88% w/w ratio of HNT, which showed increased water flux and dye flux of membranes according to different HNT concentrations including ultrafiltration membranes.


Asunto(s)
Nanocompuestos , Nanotubos , Arcilla , Filtración , Membranas Artificiales , Ultrafiltración
10.
Biomed Mater ; 15(3): 035015, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32032966

RESUMEN

Scaffold-based tissue engineering approaches have been commonly used for skin regeneration or wound healings caused by diseases or trauma. For an ideal complete healing process, scaffold structures need to meet the criteria of biocompatibility, biodegradability, and antimicrobial properties, as well as to provide geometrical necessities for the regeneration of damaged tissue. In this study, design, synthesis and characterization of a three dimensional (3D) printable copolymer based on polycaprolactone-block-poly(1,3-propylene succinate) (PCL-PPSu) including anti-microbial silver particles is presented. 3D printing of PCL-PPSu copolymers provided a lower processing temperature compared to neat PCL, hence, inclusion of temperature-sensitive bioactive reagents into the developed copolymer could be realized. In addition, 3D printed block copolymer showed an enhanced hydrolytic and enzymatic degradation behavior. Cell viability and cytotoxicity of the developed copolymer were evaluated by using human dermal fibroblast (HDF) cells. The addition of silver nitrate within the polymer matrix resulted in a significant decrease in the adhesion of different types of microorganisms on the scaffold without inducing any cytotoxicity on HDF cells in vitro. The results suggested that 3D printed PCL-PPSu scaffolds containing anti-microbial silver particles could be considered as a promising biomaterial for emerging skin regenerative therapies, in the light of its adaptability to 3D printing technology, low-processing temperature, enhanced degradation behavior and antimicrobial properties.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/química , Impresión Tridimensional , Nitrato de Plata/química , Piel/patología , Ingeniería de Tejidos/métodos , Antibacterianos/química , Antiinfecciosos/química , Fibroblastos/metabolismo , Humanos , Hidrólisis , Espectroscopía de Resonancia Magnética , Polímeros/química , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Andamios del Tejido
11.
Molecules ; 25(4)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079297

RESUMEN

This work evaluates the effects of newly designed graphene/silica hybrid additives on the properties of cementitious grout. In the hybrid structure, graphene nanoplatelet (GNP) obtained from waste tire was used to improve the thermal conductivity and reduce the cost and environmental impacts by using recyclable sources. Additionally, functionalized silica nanoparticles were utilized to enhance the dispersion and solubility of carbon material and thus the hydrolyzable groups of silane coupling agent were attached to the silica surface. Then, the hybridization of GNP and functionalized silica was conducted to make proper bridges and develop hybrid structures by tailoring carbon/silica ratios. Afterwards, special grout formulations were studied by incorporating these hybrid additives at different loadings. As the amount of hybrid additive incorporated into grout suspension increased from 3 to 5 wt%, water uptake increased from 660 to 725 g resulting in the reduction of thermal conductivity by 20.6%. On the other hand, as the concentration of GNP in hybrid structure increased, water demand was reduced, and thus the enhancement in thermal conductivity was improved by approximately 29% at the same loading ratios of hybrids in the prepared grout mixes. Therefore, these developed hybrid additives showed noticeable potential as a thermal enhancement material in cement-based grouts.


Asunto(s)
Grafito/química , Dióxido de Silicio/química , Temperatura , Residuos/análisis , Nanopartículas/química , Nanopartículas/ultraestructura , Espectroscopía de Fotoelectrones , Propilaminas/química , Reología , Silanos/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Conductividad Térmica , Termogravimetría , Difracción de Rayos X
12.
J Chem Inf Model ; 59(5): 1946-1956, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30794400

RESUMEN

Thermoplastic polyurethanes (TPUs) are designed using a large variety of basic building blocks but are only synthesized in a limited number of solvent systems. Understanding the behavior of the copolymers in a selected solvent system is of particular interest to tune the intricate balance of microphase separation/mixing, which is the key mechanism behind the structure formation in TPUs. Here, we present a computationally efficient approach for selecting TPU building blocks and solvents based on their Flory-Huggins interaction parameters for a precise control over the microphase separation/mixing. We first cluster eight soft segments (PEO, PPO, PTMO, PBA, PCL, PDMS, PIB, or PEB) used frequently in TPUs into three categories according to the strength of their interactions with the binary solvent THF/DMF. We then perform a comprehensive set of dissipative particle dynamics simulations of the TPUs in a range of solvent ratios. This enables us to demonstrate the emergence of the unusual channel-like structures in a narrow range of parameters and to determine the critical interactions operative for obtaining either microphase separated or mixed structures. The findings are supported by thermodynamic arguments. The approach developed here is useful for designing novel TPUs with well-defined conformational characteristics, controlled morphologies, and advanced functional properties.


Asunto(s)
Plásticos/química , Poliuretanos/química , Solventes/química , Temperatura
13.
Carbohydr Polym ; 201: 105-112, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30241801

RESUMEN

This paper reports the synthesis of nanocomposite agarose hydrogels with improved bioactivity with the incorporation of anisotropic 2D nanosilicates (Laponite) to promote cell binding, growth and proliferation. Rheological measurements showed that the incorporation of nanosilicates slightly increased the gelation temperature (Tgel). The use of higher nanosilicate content at the constant agarose concentration improved the mechanical properties of the gels. Due to the non-swelling nature of agarose, the addition of nanosilicates did not result in any remarkable change in the swelling properties of the agarose gels, while collapsed agarose nanofibers were observed with the incorporation of nanosilicates. EDX analysis confirmed the presence of the embedded nanosilicates in the gel matrix. The existence of physical interactions between nanosilicate and agarose was demonstrated by FTIR over the shifting of SiO stretching band to a lower frequency. The encapsulated NIH/3T3 fibroblast cells showed enhanced proliferation and spreading in the presence of nanosilicates.


Asunto(s)
Proliferación Celular , Células Inmovilizadas/metabolismo , Hidrogeles/química , Nanocompuestos/química , Sefarosa/química , Silicatos/química , Animales , Células Inmovilizadas/citología , Ensayo de Materiales , Ratones , Células 3T3 NIH
14.
ACS Appl Mater Interfaces ; 10(11): 9873-9881, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29474786

RESUMEN

A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.

15.
ACS Omega ; 3(6): 6400-6410, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458823

RESUMEN

Platinum (Pt)-decorated graphene-based carbon composite electrodes with controlled dimensionality were successfully fabricated via core-shell electrospinning/electrospraying techniques. In this process, multilayer graphene sheets were converted into the three different forms, fiber, sphere, and foam, by tailoring the polymer concentration, molecular weight of polymer, and applied voltage. As polymer concentration increased, continuous fibers were produced, whereas decreasing polymer concentration caused the formation of graphene-based foam. In addition, the reduction in polymer molecular weight in electrospun solution led to the creation of three-dimensional (3D) spherical structures. In this work, graphene-based foam was produced for the first time by utilizing core-shell electrospraying technology instead of available chemical vapor deposition techniques. The effect of morphologies and dimensions of carbonized graphene-based carbon electrodes on its electrochemical behavior was investigated by cyclic voltammetry and galvanostatic charge-discharge methods. Among the three different electrodes, Pt-supported 3D graphene-based spheres showed the highest specific capacitance of 118 F/g at a scan rate of 1 mV/s owing to the homogeneous decoration of Pt particles with a small diameter of 4 nm on the surface. After 1000 cycles of charging-discharging, Pt-decorated graphene-based structures showed high cyclic stability and retention of capacitance, indicating their potential as high-performance electrodes for energy storage devices.

16.
Soft Matter ; 13(26): 4580-4590, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28590480

RESUMEN

We report molecular dynamics in the rigid amorphous fraction (RAF) of the polymer bound at the interfaces with nanoparticles in polymer nanocomposites and calculate the glass transition temperature, Tg, for this bound layer of polymer. We follow the '3-phase-model' for semicrystalline polymers where the polymer matrix consists of the crystalline fraction (CF), the mobile amorphous fraction (MAF) and the RAF. While the amorphous polymer bound by crystallites is completely rigid, neither contributing to the glass transition, nor displaying molecular dynamics, the amorphous polymer bound at the interfaces with filler displays decelerated dynamics, as compared to the bulk polymer. Reports in the literature suggest a discrepancy between Tg values obtained by Differential Scanning Calorimetry (DSC) and by Dielectric Relaxation Spectroscopy (DRS). As a plausible explanation we suggest that DRS results in Tg values taking into account the bound polymer, whereas DSC does not. For this investigation we use semicrystalline polyurethane-urea/SiO2 nanocomposites and employ, next to DSC and DRS, SEM, SAXS and WAXS for morphological characterization. It is our intention to use DRS as a tool for investigating the RAF.

17.
Sci Rep ; 7: 41743, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134316

RESUMEN

Calcium aluminate cement (CAC) suffers from loss of workability in less than an hour (~15 minutes) after first touch of water. Current superplasticizers that are utilized to modify the viscosity of cement admixtures are designed to target ordinary Portland cement (OPC). The high affinity between these superplasticizers and cement particles were found to be detrimental in CAC systems. Utilization of a monomer that, instead, facilitates gradual adsorption of a superplasticizer provides workability retention. For the first time in literature, we report a superplasticizer that caters to the properties of CAC such as high rate of surface development and surface charge. While neat CAC was almost unworkable after 1 hour, with the addition of only 0.4% of the optimized superplasticizer, 90% fluidity retention was achieved.

18.
Sci Rep ; 6: 33178, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27630079

RESUMEN

Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing.

19.
J Microencapsul ; 33(7): 625-635, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27606701

RESUMEN

Objectives of this study were the delivery of gamma aminobutyric acid (GABA) into the brain by means of developing brain targeted, nanosized, non-toxic and biocompatible polymeric nanoparticles, and investigating their effectiveness in epilepsy. For this purpose, GABA conjugated N,N-dimethylacrylamide-based pegylated nanoparticles were designed and characterised for particle size, zeta potential, pH, morphology, DSC, XRD, FTIR, GABA quantification and in vitro release. Formulations showed smaller particle size, cationic zeta potential characteristic, possible GABA polymeric matrix interaction and prolonged release pattern. Brain responses were examined using epileptic rats. Both formulations prepared were found to increase latency of seizure, decrease ending time of convulsion, duration of severe convulsion and mortality rate significantly compared with GABA solution. When GABA concentration was measured in Stratum corsatum, there was no statistical difference between GABA solution and formulations. All findings suggested enhancement in all phases of seizures indicating efficient delivery of GABA into the brain via formulations.


Asunto(s)
Acrilamidas , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Epilepsia/tratamiento farmacológico , Nanopartículas/química , Polietilenglicoles , Ácido gamma-Aminobutírico , Acrilamidas/química , Acrilamidas/farmacocinética , Acrilamidas/farmacología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Masculino , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/farmacocinética , Ácido gamma-Aminobutírico/farmacología
20.
Phys Chem Chem Phys ; 15(41): 17862-72, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24056882

RESUMEN

We study the causes of the observed tunable hydrophobicity of poly(styrene-co-perfluoroalkyl ethylacrylate) electrosprayed in THF, DMF, and THF:DMF (1:1) solvents. Under the assumption that equilibrium morphologies in the solvent significantly affect the patterns observed on electrosprayed surfaces, we use atomistic and coarse-grained simulations supported by dynamic light scattering (DLS) experiments to focus on the parameters that affect the resulting morphology of superhydrophobic electrosprayed beads. The differing equilibrium chain size distributions in these solvents examined by DLS are corroborated by chain dimensions obtained via molecular dynamics simulations. Mesoscopic morphologies monitored by dissipative particle dynamics simulations explain experimental observations; in particular, the preference of the polymer for THF over DMF in the binary mixture rationalizes the dual scale roughness driven by stable microphase separation. Drying phenomena that affect resultant dual-scale roughness are described in three stages, each interpreted by concentration dependent diffusion and surface mass transfer coefficients of the solvents. Irrespective of the presence of polar groups in the structure, a conflict between the lower-boiling point solvent adhering to the polymer and the less volatile solvent abundant in the bulk leads to perfectly hydrophobic surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA