Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(4): e2316477121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38236737

RESUMEN

Ni is the second most abundant element in the Earth's core. Yet, its effects on the inner core's structure and formation process are usually disregarded because of its electronic and size similarity with Fe. Using ab initio molecular dynamics simulations, we find that the bcc phase can spontaneously crystallize in liquid Ni at temperatures above Fe's melting point at inner core pressures. The melting temperature of Ni is shown to be 700 to 800 K higher than that of Fe at 323 to 360 GPa. hcp, bcc, and liquid phase relations differ for Fe and Ni. Ni can be a bcc stabilizer for Fe at high temperatures and inner core pressures. A small amount of Ni can accelerate Fe's crystallization at core pressures. These results suggest that Ni may substantially impact the structure and formation process of the solid inner core.

2.
J Phys Condens Matter ; 35(49)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37666249

RESUMEN

Martensitic transformations in shape memory alloys are often accompanied by thermal hysteresis, and engineering this property is of prime scientific interest. The martensitic transformation can be characterized as thermoelastic, where the extent of the transformation is determined by a balance between thermodynamic driving force and stored elastic energy. Here we used molecular dynamics simulations of the NiTi alloy to explore hysteresis-inducing mechanisms and thermoelastic behavior by progressively increasing microstructural constraints from single crystals to bi-crystals to polycrystals. In defect-free single crystals, the austenite-martensite interface moves unimpeded with a high velocity. In bi-crystals, grain boundaries act as significant obstacles to the transformation and produce hysteresis by requiring additional nucleation events. In polycrystals, the transformation is further limited by the thermoelastic balance. The stored elastic energy can be converted to mechanisms of non-elastic strain accommodation, which also produce hysteresis. We further demonstrated that the thermoelastic behavior can be controlled by adjusting microstructural constraints.

3.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34987099

RESUMEN

The Earth's inner core started forming when molten iron cooled below the melting point. However, the nucleation mechanism, which is a necessary step of crystallization, has not been well understood. Recent studies have found that it requires an unrealistic degree of undercooling to nucleate the stable, hexagonal, close-packed (hcp) phase of iron that is unlikely to be reached under core conditions and age. This contradiction is referred to as the inner core nucleation paradox. Using a persistent embryo method and molecular dynamics simulations, we demonstrate that the metastable, body-centered, cubic (bcc) phase of iron has a much higher nucleation rate than does the hcp phase under inner core conditions. Thus, the bcc nucleation is likely to be the first step of inner core formation, instead of direct nucleation of the hcp phase. This mechanism reduces the required undercooling of iron nucleation, which provides a key factor in solving the inner core nucleation paradox. The two-step nucleation scenario of the inner core also opens an avenue for understanding the structure and anisotropy of the present inner core.

4.
J Chem Phys ; 149(17): 174501, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30408998

RESUMEN

The temperature dependence of the solid-liquid interfacial free energy, γ, is investigated for Al and Ni at the undercooled temperature regime based on a recently developed persistent-embryo method. The atomistic description of the nucleus shape is obtained from molecular dynamics simulations. The computed γ shows a linear dependence on the temperature. The values of γ extrapolated to the melting temperature agree well with previous data obtained by the capillary fluctuation method. Using the temperature dependence of γ, we estimate the nucleation free energy barrier in a wide temperature range from the classical nucleation theory. The obtained data agree very well with the results from the brute-force molecular dynamics simulations.

5.
Phys Rev Lett ; 120(8): 085703, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29543013

RESUMEN

The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a "persistent embryo" method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleation of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. Thus, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.


Asunto(s)
Cristalización , Modelos Químicos , Simulación de Dinámica Molecular
6.
Sci Rep ; 6: 23734, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27030071

RESUMEN

We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disorder transitions in condensed matter systems.

7.
J Phys Condens Matter ; 27(20): 205701, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-25950379

RESUMEN

We have performed molecular dynamics simulations on a typical Al-based alloy Al90Sm10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid. These results are in agreement with x-ray diffraction experiments. The interplay between the short-range order of the system originating from the large affinity between Al and Sm atoms, and the intrinsic repulsion between Sm atoms gives rise to a stronger correlation in the second peak than the first peak in the Sm-Sm partial pair correlation function (PPCF), which in turn produces the prepeak in the structure factor.

8.
Ultramicroscopy ; 124: 40-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23142743

RESUMEN

The effects of spatial and temporal averaging on high-resolution transmission electron microscope (HRTEM) images and associated intensity profiles of a solid-liquid Al interface were investigated using atomic coordinates obtained from molecular dynamics simulations. It was found that intensity profiles obtained by spatial averaging across the solid-liquid interface capture the variation in structural features nearly as well as time-averaged intensity profiles. This suggests that adequate spatial averaging of a single HRTEM image can be used to study the contrast from interfaces, and thereby, the structural details, without the need for more time-consuming, computer-intensive time averaged analyses. The limitations of this method are also discussed.


Asunto(s)
Microscopía Electrónica de Transmisión/métodos , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...