Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38257989

RESUMEN

It is widely accepted that the continuously growing human population needs rapid solutions to respond to the increased global demand for high agricultural productivity [...].

2.
Chemosphere ; 329: 138630, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37031840

RESUMEN

Competition with weeds is one of the main factors that limit the development of forest species. Some herbicides used to control these plants have a residual effect on the soil. Bioremediation is an alternative to decontaminate these areas. The aim of this study was to evaluate the tolerance of Aspergillus niger, Penicillium pinophilum and Trichoderma sp. and its degrading potential on residual effect herbicides. The tolerance of Bacillus subtilis, Pseudomonas sp. and Azospirillum brasilense to herbicides was also evaluated. The herbicides used in this study were indaziflam, sulfentrazone, sulfentrazone + diuron, clomazone and glyphosate + s-metolachlor. The analysis of the tolerance and degradation potential of fungi was carried out in Czapek Dox medium and the growth was evaluated by determining the biomass. Bacterial tolerance analysis was performed in Luria Bertani medium and growth monitored by optical density. The data were applied to the Gompertz model to evaluate the behavior of bacteria. Bacterial growth parameters were not influenced by the presence of herbicides. All fungi were tolerant to the herbicides tested and there was an increase in the growth of Trichoderma sp. Thus, the analysis of the degrading potential was performed only for Trichoderma sp. in the presence of herbicides that potentiated its growth. In this analysis, there was no effect of herbicides on fungal growth; the fungus was unable to use the carbon present in the herbicide to enhance its growth; and there was no significant effect of nitrogen in the presence of the herbicide. It is concluded, therefore, that the tested residual herbicides do not interfere with the development of the evaluated microorganisms.


Asunto(s)
Eucalyptus , Herbicidas , Herbicidas/toxicidad , Herbicidas/metabolismo , Eucalyptus/metabolismo , Sulfonamidas/metabolismo , Triazoles/metabolismo , Microbiología del Suelo
3.
Microorganisms ; 10(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36144318

RESUMEN

The application of plant beneficial microorganisms is widely accepted as an efficient alternative to chemical fertilizers and pesticides. It was shown that annually, mycorrhizal fungi and nitrogen-fixing bacteria are responsible for 5 to 80% of all nitrogen, and up to 75% of P plant acquisition. However, while bacteria are the most studied soil microorganisms and most frequently reported in the scientific literature, the role of fungi is relatively understudied, although they are the primary organic matter decomposers and govern soil carbon and other elements, including P-cycling. Many fungi can solubilize insoluble phosphates or facilitate P-acquisition by plants and, therefore, form an important part of the commercial microbial products, with Aspergillus, Penicillium and Trichoderma being the most efficient. In this paper, the role of fungi in P-solubilization and plant nutrition will be presented with a special emphasis on their production and application. Although this topic has been repeatedly reviewed, some recent views questioned the efficacy of the microbial P-solubilizers in soil. Here, we will try to summarize the proven facts but also discuss further lines of research that may clarify our doubts in this field or open new perspectives on using the microbial and particularly fungal P-solubilizing potential in accordance with the principles of the sustainability and circular economy.

4.
PLoS One ; 17(9): e0274731, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36121857

RESUMEN

Plant microbiome engineering is a promising tool to unlock crop productivity potential and exceed the yield obtained with conventional chemical inputs. We studied the effect of Aspergillus niger inoculation on in-field lettuce (Lactuca sativa) growth in soils with limiting and non-limiting P concentrations. Lettuce plants originating from inoculated seeds showed increased plant diameter (6.9%), number of leaves (8.1%), fresh weight (23.9%), and chlorophyll content (3.8%) as compared to non-inoculated ones. Inoculation of the seedling substrate just before transplanting was equally efficient to seed inoculation, while application of a granular formulation at transplanting did not perform well. Plant response to P addition was observed only up to 150 kg P2O5 ha-1, but A. niger inoculation allowed further increments in all vegetative parameters. We also employed a high-throughput phenotyping method based on aerial images, which allowed us to detect changes in plants due to A. niger inoculation. The visible atmospherically resistant index (VARI) produced an accurate prediction model for chlorophyll content, suggesting this method might be used to large-scale surveys of croplands inoculated with beneficial microorganisms. Our findings demonstrate that A. niger inoculation surpasses the yield obtained with conventional chemical inputs, allowing productivity gains not reached by just increasing P doses.


Asunto(s)
Aspergillus niger , Lactuca , Clorofila , Plantones , Suelo
5.
Microorganisms ; 10(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35456725

RESUMEN

This study evaluated the potential of Aspergillus niger as an inoculant for growth promotion of vegetable seedlings. Seven vegetable species were evaluated in independent experiments carried out in 22 + 1 factorial schemes, with two doses of conidia (102 and 106 per plant) applied in two inoculation methods (seed treatment and in-furrow granular application), plus an uninoculated control. Experiments were carried out in a greenhouse. Growth parameters evaluated were shoot length, stem diameter, root volume, total root length, shoot and root fresh mass, shoot and root dry mass, and total dry mass. Regardless of the dose and inoculation method, seedlings inoculated with A. niger showed higher growth than uninoculated ones for all crops. The highest relative increase promoted by the fungus was observed for aboveground parts, increasing the production of shoot fresh mass of lettuce (61%), kale (40%), scarlet eggplant (101%), watermelon (38%), melon (16%), pepper (92%), and tomato (42%). Aspergillus niger inoculation also increased seedling root growth of lettuce, pepper, scarlet eggplant, watermelon, and tomato. This research shows that A. niger boosts the growth of all analyzed vegetables, appearing as a promising bio-input for vegetable seedling production.

6.
Microb Biotechnol ; 15(4): 1189-1202, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33710773

RESUMEN

Oxalic acid-producing fungi play an important role in biogeochemical transformations of rocks and minerals and possess biotechnological potential for extraction of valuable elements from primary or waste ores and other solid matrices. This research investigates the extraction of phosphate from rock phosphate (RP) by oxalic acid. Reaction parameters were derived using pure oxalic acid solutions to solubilize RP. It was found that the oxalic acid concentration was the main factor driving reaction kinetics. Excess oxalic acid could retard the reaction due to calcium oxalate encrustation on RP surfaces. However, complete P extraction was reached at stoichiometric proportions of apatite and oxalic acid. This reaction reached completion after 168 h, although most of the P (up to 75%) was released in less than 1 h. Most of the Ca released from the apatite formed sparingly soluble calcium oxalate minerals, with a predominance of whewellite over weddellite. Bioleaching of RP employing biomass-free spent culture filtrates containing oxalic acid (100 mM) produced by Aspergillus niger extracted ~ 74% of the P contained in the RP. These findings contribute to a better understanding of the reaction between apatite and oxalic acid and provide insights for potential applications of this process for biotechnological production of phosphate fertilizer.


Asunto(s)
Ácido Oxálico , Fosfatos , Aspergillus niger , Minerales
7.
Microb Biotechnol ; 8(6): 930-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26112323

RESUMEN

A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil-plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials.


Asunto(s)
Aspergillus niger/metabolismo , Fertilizantes , Fosfatos/metabolismo , Aspergillus niger/crecimiento & desarrollo , Celulosa/metabolismo , Medios de Cultivo/química , Fermentación , Phaseolus/crecimiento & desarrollo , Saccharum/metabolismo , Temperatura
8.
PLoS One ; 9(10): e110246, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25310310

RESUMEN

P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs). Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F-). The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO4)2 and F-. The mutant FS1-555 showed the highest solubilization in the presence of F-, releasing approximately 70% of the P contained in Ca3(PO4)2, a value 1.7 times higher than that obtained for the wild type (WT). The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F-, indicating that mutagenesis allowed the acquisition of F- tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources.


Asunto(s)
Aspergillus niger/genética , Aspergillus niger/metabolismo , Fluoruros , Mutación , Fosfatos , Biomasa , Concentración de Iones de Hidrógeno , Mutagénesis , Solubilidad
9.
Appl Environ Microbiol ; 80(10): 3081-5, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24610849

RESUMEN

During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.


Asunto(s)
Aspergillus niger/metabolismo , Carbón Orgánico/química , Ácido Cítrico/metabolismo , Fluoruros/toxicidad , Sedimentos Geológicos/química , Gluconatos/metabolismo , Ácido Oxálico/metabolismo , Fósforo/metabolismo , Adsorción , Fluoruros/química , Fósforo/química , Suelo/química , Microbiología del Suelo , Solubilidad
10.
Appl Environ Microbiol ; 79(16): 4906-13, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23770895

RESUMEN

The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F(-) per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions.


Asunto(s)
Aspergillus niger/metabolismo , Fosfatos/metabolismo , Brasil , Fluoruros/metabolismo , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Microbiología del Suelo , Solubilidad , Espectrofotometría Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA