Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 252: 123799, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36027621

RESUMEN

According to the annual production of plastics worldwide, in 2020 about 370 million tons of plastic were produced in the world. Chemical recycling, particularly pyrolysis of plastic wastes, could be a valuable solution to resolve these problems and provide an alternative pathway to produce "recycled" chemical products for the petrochemical industry. Nevertheless, the pyrolysis oils need a detailed characterization before the upgrading test to re-use them to generate new recycled products. Multidimensional gas chromatography coupled with both low- and high-resolution time-of-flight mass spectrometers was employed for a detailed investigation among and within different chemical classes present in bio-plastic oil. The presence of several isomeric species as well as homologs series did not allow a reliable molecular identification, except for a few compounds that showed both MS similarity >800/1000 and retention index within ±20. Indeed, the identification of several isomeric species was assessed by high-resolution mass spectrometry equipped with photoionization interface. This soft ionization mode was an additional filter in the identification step allowing unambiguous identification of analytes not identified by the standard electron ionization mode at 70 eV. The injection method was also optimized using a central composite design to successfully introduce a wide range of carbon number compounds without discrimination of low/high boiling points.


Asunto(s)
Plásticos , Pirólisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Aceites de Plantas/química , Compuestos Orgánicos
2.
J Am Soc Mass Spectrom ; 33(7): 1194-1203, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35709480

RESUMEN

Formulated lubricants correspond to high value products used for several applications in automotive, industrial, medicinal, and agro-food sectors. They correspond to complex matrices composed of approximately 80% of base oils (mineral or synthetic) and of about 20% of additives. Additives are generally low molecular weight polymeric molecules with a great diversity of elements. To characterize such complex compositions at the molecular level, ultrahigh resolution mass spectrometers are required. Two formulated lubricants and two additive packages were analyzed by Fourier transform ion cyclotron resonance mass spectrometry in direct infusion. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) sources were used to have an exhaustive characterization of the samples. The Kendrick mass defects (KMD) plot is a widespread representation to characterize polymeric molecules. Here, the terms apparent mass defect and apparent Kendrick mass defects (aKMD) values were introduced to consider the uncertainty on nominal mass determination. Several additive families including alkyldiphenylamines, trisalkylphenylthiophosphoric acid, zinc dithiophosphates, bisuccinimide dispersants, and their derivatives were observed by APCI(+). ESI(-) also presented a use for the selective ionization of acidic compounds including sulfonates, phenates, and sulfur phenate molecules. The specific aKMD values and polydispersity of many additive families have been reported to create a database of additives. Overall, this study demonstrated the great utility of the aKMD approach and the use of the ESI/APCI combination for a simple and fast characterization of formulated lubricant and additive package samples.


Asunto(s)
Ciclotrones , Espectrometría de Masa por Ionización de Electrospray , Cefotaxima , Análisis de Fourier , Humanos , Lubricantes , Espectrometría de Masa por Ionización de Electrospray/métodos
3.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8755, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32060954

RESUMEN

RATIONALE: The offline coupling of high-performance thin-layer chromatography (HPTLC) with atmospheric solids analysis probe mass spectrometry (ASAP-MS) was evaluated for the characterization of polymeric additives in gasoline. METHODS: A protocol was developed to optimize the ion signal. A glass capillary was moistened with deionized water, and then dipped into silica gel scratched from an HPTLC plate. The capillary tube was fixed to the ASAP holder and introduced into the ionization source for analysis by MS. Silica gel, reversed-phase C18 and cellulose stationary phases were evaluated. RESULTS: The effect of the stationary phase and the nature of analyte were evaluated using polypropylene glycol and polyisobutylene succinimide polyamine as analyte molecules. The optimal ionization conditions are significantly different between ASAP and HPTLC/ASAP-MS analyses. In particular, a higher desorption gas temperature was required to produce ions from the silica gel HPTLC plate. The presence of the stationary phase reduces the internal energy of the ions and limits the fragmentation. CONCLUSIONS: HPTLC/ASAP-MS is a very fast and efficient technique for the analysis of polymers in formulated fuels. Good ionization efficiency was obtained with all investigated stationary phases.

4.
Analyst ; 143(16): 3934-3940, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30051117

RESUMEN

Polyalphaolefins (PAOs) are saturated alpha olefin oligomers used as a base stock oil for synthetic lubricants. The synthetic base stocks are manufactured from linear alpha olefins by catalytic oligomerization processes. The aim of this work was the characterization of different PAO grades, synthesized from different linear alpha olefins using two oligomerization processes, acid and metallocene catalyses. Negative ion atmospheric pressure photoionization (APPI) coupled with ion mobility spectrometry-mass spectrometry (IMS-MS) permitted the detection of intact PAO adducts with either chloride, bromide or iodide ions using halogenated solvents (e.g. dichloromethane, dibromomethane and diiodomethane) and toluene as the dopant. The best signal-to-noise ratio was obtained with dichloromethane. The APPI mass spectra displayed characteristic ion distributions for high viscosity PAO grades. The mass shift between two adjacent ions permitted the identification of repeating units and consequently the monomers of alpha olefins used to manufacture the PAO. For low PAO grades, the halide anion adducts were not detected as they are less stable. The IMS-MS data, as well as the correlated variables, i.e. the drift time and full width at half maximum (FWHM) of the IMS peaks, can be used to differentiate polyalphaolefins of the same grade but differently synthesized.

5.
J Am Soc Mass Spectrom ; 29(8): 1678-1687, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29855890

RESUMEN

Polyalphaolefins (PAOs) are polymers produced from linear alpha olefins through catalytic oligomerization processes. The PAOs are known as synthetic high-performance base stock fluids used to improve the efficiency of many other synthetic products. In this study, we report the direct characterization of PAOs using atmospheric solid analysis probe (ASAP) coupled with ion mobility spectrometry-mass spectrometry (IMS-MS). We studied different PAOs grades exhibiting low- and high-viscosity index. Specific adjustments of the ASAP source parameters permitted the monitoring of ionization processes as three mechanisms could occur for these compounds: hydride abstraction, nitrogen addition, and/or the formation of [M-2H]+• ions. Several series of fragment ions were obtained, which allowed the identification of the alpha olefin used to synthesize the PAO. The use of the ion mobility separation dimension provides information on isomeric species. In addition, the drift time versus m/z plots permitted rapid comparison between PAO samples and to evidence their complexity. These 2D plots appear as fingerprints of PAO samples. To conclude, the resort to ASAP-IMS-MS provides a rapid characterization of the PAO samples in a direct analysis approach, without any sample preparation. Graphical Abstract ᅟ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...