Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Spine ; 4: 103327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281851

RESUMEN

Background: Spaceflights influence intracranial compliance (ICC). P2/P1 ratio, from the intracranial pressure (ICP) waveform, provides information about ICC. Additionally, non-invasive methods for ICC monitoring are needed for spaceflights. Furthermore, astronauts try to maintain good levels of cardiorespiratory fitness before and during spaceflights, not only to sustain exploratory missions, but also to prevent diseases in extreme environments. Objective: to correlate cardiorespiratory fitness levels with the P2/P1 ratio during a microgravity analog [-6° head-down tilt (HDT)]. Method: 34 individuals (11 women), mean age of 31.7 (±6.3) years and BMI 24.2 (±3.2) performed a cardiopulmonary exercise testing (CPET) with an incremental protocol on a cycle ergometer to determine the cardiopulmonary fitness through peak relative oxygen uptake (VO2 peak) of each individual. On the second test, which was conducted in an interval of 15 days of the CPET, participants remained for 30 min at HDT with P2/P1 ratio acquired using a non-invasive strain gauge sensor. The average of the last 5 min was used for analysis. The mean P2/P1 ratio and relative VO2 peak were correlated using the Spearman test. Results: Volunteers presented 1.05 ± 0.2 of P2/P1 ratio and VO2 peak of 47.5 ± 7.6 mL/kg/min. The Spearman test indicated a negative and low correlation between the P2/P1 ratio and VO2 peak (ρ = -0.388; p = 0.023). Conclusion: The study suggests that the better the cardiorespiratory fitness, the better ICC in a weightlessness simulation.

2.
Front Physiol ; 15: 1438089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129756

RESUMEN

Background: The microgravity environment has a direct impact on the cardiovascular system due to the fluid shift and weightlessness that results in cardiac dysfunction, vascular remodeling, and altered Cardiovascular autonomic modulation (CAM), deconditioning and poor performance on space activities, ultimately endangering the health of astronauts. Objective: This study aimed to identify the acute and chronic effects of microgravity and Earth analogues on cardiovascular anatomy and function and CAM. Methods: CINAHL, Cochrane Library, Scopus, Science Direct, PubMed, and Web of Science databases were searched. Outcomes were grouped into cardiovascular anatomic, functional, and autonomic alterations, and vascular remodeling. Studies were categorized as Spaceflight (SF), Chronic Simulation (CS), or Acute Simulation (AS) based on the weightlessness conditions. Meta-analysis was performed for the most frequent outcomes. Weightlessness and control groups were compared. Results: 62 articles were included with a total of 963 participants involved. The meta-analysis showed that heart rate increased in SF [Mean difference (MD) = 3.44; p = 0.01] and in CS (MD = 4.98; p < 0.0001), whereas cardiac output and stroke volume decreased in CS (MD = -0.49; p = 0.03; and MD = -12.95; p < 0.0001, respectively), and systolic arterial pressure decreased in AS (MD = -5.20; p = 0.03). According to the qualitative synthesis, jugular vein cross-sectional area (CSA) and volume were greater in all conditions, and SF had increased carotid artery CSA. Heart rate variability and baroreflex sensitivity, in general, decreased in SF and CS, whereas both increased in AS. Conclusion: This review indicates that weightlessness impairs the health of astronauts during and after spaceflight, similarly to the effects of aging and immobility, potentially increasing the risk of cardiovascular diseases. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020215515.

3.
Front Neurol ; 12: 756112, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759884

RESUMEN

Background: Intracranial compliance (ICC) has been studied to complement the interpretation of intracranial pressure (ICP) in neurocritical care and help predict brain function deterioration. It has been reported that ICC is related to maintaining ICP stability despite changes in intracranial volume. However, this has not been properly translated to clinical practice. Therefore, the main objective of this scoping review was to map the key concepts of ICC in the literature. This review also aimed to characterize the relationship between ICC and ICP and systematically describe the outcomes used to assess ICC using both invasive and non-invasive measurement methods. Methods: This review included the following: (1) population: animal and humans, (2) concept of compliance or its inverse "elastance," and (3) context: neurocritical care. Therefore, literature searches without a time frame were conducted on several databases using a combination of keywords and descriptors. Results and Discussion: 43,339 articles were identified, and 297 studies fulfilled the inclusion criteria after the selection process. One hundred and five studies defined ICC. The concept was organized into three main components: physiological definition, clinical interpretation, and localization of the phenomena. Most of the studies reported the concept of compliance related to variations in volume and pressure or its inverse (elastance), primarily in the intracranial compartment. In addition, terms like "accommodation," "compensation," "reserve capacity," and "buffering ability" were used to describe the clinical interpretation. The second part of this review describes the techniques (invasive and non-invasive) and outcomes used to measure ICC. A total of 297 studies were included. The most common method used was invasive, representing 57-88% of the studies. The most commonly assessed variables were related to ICP, especially the absolute values or pulse amplitude. ICP waveforms should be better explored, along with the potential of non-invasive methods once the different aspects of ICC can be measured. Conclusion: ICC monitoring could be considered a complementary resource for ICP monitoring and clinical examination. The combination and validation of invasive/non-invasive or non-invasive measurement methods are required.

4.
Brain Behav ; 10(3): e01472, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32004425

RESUMEN

INTRODUCTION: Upper limb movements are affected frequently by brain ischemia (BI). Mechanisms involved in recovery and compensatory movements have developed several studies. However, less attention is given to skeletal muscles, where neuromuscular junction (NMJ) has an important role on muscle tropism and functional performance. METHODS: Animals were divided into two groups: control (C) and BI. Then, animals were skilled to perform single-pellet retrieval task, following these procedures: habituation, shaping, and single-pellet retrieval task. BI was induced using stereotaxic surgery in order to apply endothelin-1 in motor cortex, representative of movements of dominant paw. Reaching task performance was evaluated by single-pellet retrieval task 1 day before BI induction, 4 and 15 days after BI induction. After that, biceps, triceps, fingers flexor, and extensor muscles were extracted. NMJ was assessed in morphometric characteristics (total area, total perimeter, and feret). Muscle fiber cross-sectional area and connective tissue percentage were also evaluated for characterization. Student's t test was used for comparisons between C and BI groups. Tau Kendall's correlation was applied among variables from BI group. RESULTS: An increase in all NMJ morphometric parameters, as well as increase of atrophy and fibrosis in BI group compared with C. There was a high level of direct correlation between mean values of NMJ morphometry with percentage of success in reaching task in BI group. CONCLUSION: Brain ischemia-induced NMJ compensatory expansion, muscle atrophy, and fibrosis in forelimb muscles that are related to reaching performance.


Asunto(s)
Adaptación Fisiológica/fisiología , Isquemia Encefálica/fisiopatología , Corteza Cerebral/fisiopatología , Miembro Anterior/fisiopatología , Actividad Motora/fisiología , Unión Neuromuscular/fisiopatología , Recuperación de la Función/fisiología , Animales , Masculino , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA