Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 57(17): 2095-2110.e5, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36027918

RESUMEN

Skeletal myogenesis is dynamic, and it involves cell-shape changes together with cell fusion and rearrangements. However, the final muscle arrangement is highly organized with striated fibers. By combining live imaging with quantitative analyses, we dissected fast-twitch myocyte fusion within the zebrafish myotome in toto. We found a strong mediolateral bias in fusion timing; however, at a cellular scale, there was heterogeneity in cell shape and the relationship between initial position of fast myocytes and resulting fusion partners. We show that the expression of the fusogen myomaker is permissive, but not instructive, in determining the spatiotemporal fusion pattern. Rather, we observed a close coordination between slow muscle rearrangements and fast myocyte fusion. In mutants that lack slow fibers, the spatiotemporal fusion pattern is substantially noisier. We propose a model in which slow muscles guide fast myocytes by funneling them close together, enhancing fusion probability. Thus, despite fusion being highly stochastic, a robust myotome structure emerges at the tissue scale.


Asunto(s)
Células Musculares , Pez Cebra , Animales , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Músculos/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Curr Opin Cell Biol ; 73: 69-77, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34303916

RESUMEN

Tissue remodelling and organ shaping during morphogenesis are products of mechanical forces generated at the cellular level. These cell-scale forces can be coordinated across the tissue via information provided by biochemical and mechanical cues. Such coordination leads to the generation of complex tissue shape during morphogenesis. In this short review, we elaborate the role of cellular active stresses in vertebrate axis morphogenesis, primarily using examples from postgastrulation development of the zebrafish embryo.


Asunto(s)
Embrión de Mamíferos , Pez Cebra , Animales , Morfogénesis
3.
Free Radic Biol Med ; 130: 82-98, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30342187

RESUMEN

Cell movements are essential for morphogenesis during animal development. Epiboly is the first morphogenetic process in zebrafish in which cells move en masse to thin and spread the deep and enveloping cell layers of the blastoderm over the yolk cell. While epiboly has been shown to be controlled by complex molecular networks, the contribution of reactive oxygen species (ROS) to this process has not previously been studied. Here, we show that ROS are required for epiboly in zebrafish. Visualization of ROS in whole embryos revealed dynamic patterns during epiboly progression. Significantly, inhibition of NADPH oxidase activity leads to a decrease in ROS formation, delays epiboly, alters E-cadherin and cytoskeleton patterns and, by 24 h post-fertilization, decreases embryo survival, effects that are rescued by hydrogen peroxide treatment. Our findings suggest that a delicate ROS balance is required during early development and that disruption of that balance interferes with cell adhesion, leading to defective cell motility and epiboly progression.


Asunto(s)
Blastodermo/metabolismo , Citoesqueleto/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/fisiología , Animales , Cadherinas/metabolismo , Adhesión Celular , Movimiento Celular , Embrión no Mamífero , Morfogénesis , Proteínas de Pez Cebra/metabolismo
4.
Molecules ; 24(1)2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30577489

RESUMEN

By using a zebrafish embryo model to guide the chromatographic fractionation of antimitotic secondary metabolites, seven podophyllotoxin-type lignans were isolated from a hydroalcoholic extract obtained from the steam bark of Bursera fagaroides. The compounds were identified as podophyllotoxin (1), ß-peltatin-A-methylether (2), 5'-desmethoxy-ß-peltatin-A-methylether (3), desmethoxy-yatein (4), desoxypodophyllotoxin (5), burseranin (6), and acetyl podophyllotoxin (7). The biological effects on mitosis, cell migration, and microtubule cytoskeleton remodeling of lignans 1⁻7 were further evaluated in zebrafish embryos by whole-mount immunolocalization of the mitotic marker phospho-histone H3 and by a tubulin antibody. We found that lignans 1, 2, 4, and 7 induced mitotic arrest, delayed cell migration, and disrupted the microtubule cytoskeleton in zebrafish embryos. Furthermore, microtubule cytoskeleton destabilization was observed also in PC3 cells, except for 7. Therefore, these results demonstrate that the cytotoxic activity of 1, 2, and 4 is mediated by their microtubule-destabilizing activity. In general, the in vivo and in vitro models here used displayed equivalent mitotic effects, which allows us to conclude that the zebrafish model can be a fast and cheap in vivo model that can be used to identify antimitotic natural products through bioassay-guided fractionation.


Asunto(s)
Bursera/química , Citoesqueleto/química , Lignanos/química , Tubulina (Proteína)/química , Animales , Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Lignanos/farmacología , Microtúbulos , Estructura Molecular , Pez Cebra
5.
Gene Expr Patterns ; 19(1-2): 98-107, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26315538

RESUMEN

Antioxidant cellular mechanisms are essential for cell redox homeostasis during animal development and in adult life. Previous in situ hybridization analyses of antioxidant enzymes in zebrafish have indicated that they are ubiquitously expressed. However, spatial information about the protein distribution of these enzymes is not available. Zebrafish embryos are particularly suitable for this type of analysis due to their small size, transparency and fast development. The main objective of the present work was to analyze the spatial and temporal gene expression pattern of the two reported zebrafish glutathione peroxidase 4 (GPx4) genes during the first day of zebrafish embryo development. We found that the gpx4b gene shows maternal and zygotic gene expression in the embryo proper compared to gpx4a that showed zygotic gene expression in the periderm covering the yolk cell only. Following, we performed a GPx4 protein immunolocalization analysis during the first 24-h of development. The detection of this protein suggests that the antibody recognizes GPx4b in the embryo proper during the first 24 h of development and GPx4a at the periderm covering the yolk cell after 14-somite stage. Throughout early cleavages, GPx4 was located in blastomeres and was less abundant at the cleavage furrow. Later, from the 128-cell to 512-cell stages, GPx4 remained in the cytoplasm but gradually increased in the nuclei, beginning in marginal blastomeres and extending the nuclear localization to all blastomeres. During epiboly progression, GPx4b was found in blastoderm cells and was excluded from the yolk cell. After 24 h of development, GPx4b was present in the myotomes particularly in the slow muscle fibers, and was excluded from the myosepta. These results highlight the dynamics of the GPx4 localization pattern and suggest its potential participation in fundamental developmental processes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Glutatión Peroxidasa/genética , Proteínas de Pez Cebra/genética , Animales , Blastodermo/metabolismo , Citocinesis , Embrión no Mamífero , Desarrollo Embrionario , Glutatión Peroxidasa/biosíntesis , Glutatión Peroxidasa/metabolismo , Hibridación in Situ , Isoenzimas , Mesodermo/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Pez Cebra , Proteínas de Pez Cebra/biosíntesis
6.
Anat Rec (Hoboken) ; 296(5): 759-73, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23554225

RESUMEN

Although cell proliferation is an essential cell behavior for animal development, a detailed analysis of spatial and temporal patterns of proliferation in whole embryos are still lacking for most model organisms. Zebrafish embryos are particularly suitable for this type of analysis due to their transparency and size. Therefore, the main objective of the present work was to analyze the spatial and temporal patterns of proliferation during the first day of zebrafish embryo development by indirect immunofluorescence against phosphorylated histone H3, a commonly used mitotic marker. Several interesting findings were established. First, we found that mitosis metasynchrony among blastomeres could begin at the 2- to 4-cell stage embryos. Second, mitosis synchrony was lost before the midblastula transition (MBT). Third, we observed a novel pattern of mitotic clusters that coincided in time with the mitotic pseudo "waves" described to occur before the MBT. Altogether, our findings indicate that early development is less synchronic than anticipated and that synchrony is not a requirement for proper development in zebrafish.


Asunto(s)
Proliferación Celular , Mitosis , Pez Cebra/embriología , Animales , Blastómeros/fisiología , Gástrula/citología , Índice Mitótico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...