Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(29): e2313370121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985769

RESUMEN

Heat Shock Factor 1 (HSF1) is best known as the master transcriptional regulator of the heat-shock response (HSR), a conserved adaptive mechanism critical for protein homeostasis (proteostasis). Combining a genome-wide RNAi library with an HSR reporter, we identified Jumonji domain-containing protein 6 (JMJD6) as an essential mediator of HSF1 activity. In follow-up studies, we found that JMJD6 is itself a noncanonical transcriptional target of HSF1 which acts as a critical regulator of proteostasis. In a positive feedback circuit, HSF1 binds and promotes JMJD6 expression, which in turn reduces heat shock protein 70 (HSP70) R469 monomethylation to disrupt HSP70-HSF1 repressive complexes resulting in enhanced HSF1 activation. Thus, JMJD6 is intricately wired into the proteostasis network where it plays a critical role in cellular adaptation to proteotoxic stress.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico , Histona Demetilasas con Dominio de Jumonji , Proteostasis , Humanos , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteostasis/fisiología , Retroalimentación Fisiológica , Adaptación Fisiológica , Células HEK293 , Estrés Proteotóxico
2.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38453366

RESUMEN

The recently discovered HAPSTR1 protein broadly oversees cellular stress responses. This function requires HUWE1, a ubiquitin ligase that paradoxically marks HAPSTR1 for degradation, but much about this pathway remains unclear. Here, leveraging multiplexed proteomics, we find that HAPSTR1 enables nuclear localization of HUWE1 with implications for nuclear protein quality control. We show that HAPSTR1 is tightly regulated and identify ubiquitin ligase TRIP12 and deubiquitinase USP7 as upstream regulators titrating HAPSTR1 stability. Finally, we generate conditional Hapstr1 knockout mice, finding that Hapstr1-null mice are perinatal lethal, adult mice depleted of Hapstr1 have reduced fitness, and primary cells explanted from Hapstr1-null animals falter in culture coincident with HUWE1 mislocalization and broadly remodeled signaling. Notably, although HAPSTR1 potently suppresses p53, we find that Hapstr1 is essential for life even in mice lacking p53. Altogether, we identify novel components and functional insights into the conserved HAPSTR1-HUWE1 pathway and demonstrate its requirement for mammalian life.


Asunto(s)
Proteína p53 Supresora de Tumor , Ubiquitina-Proteína Ligasas , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/genética , Proteínas Nucleares/metabolismo , Transducción de Señal/genética , Mamíferos/metabolismo
3.
Cell Stress Chaperones ; 29(1): 143-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38311120

RESUMEN

Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.


Asunto(s)
Proteínas de Choque Térmico , Medicina , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Respuesta al Choque Térmico/genética , Biología
4.
Cell Rep Med ; 4(12): 101326, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118413

RESUMEN

Multiple cancers exhibit aberrant protein arginine methylation by both type I arginine methyltransferases, predominately protein arginine methyltransferase 1 (PRMT1) and to a lesser extent PRMT4, and by type II PRMTs, predominately PRMT5. Here, we perform targeted proteomics following inhibition of PRMT1, PRMT4, and PRMT5 across 12 cancer cell lines. We find that inhibition of type I and II PRMTs suppresses phosphorylated and total ATR in cancer cells. Loss of ATR from PRMT inhibition results in defective DNA replication stress response activation, including from PARP inhibitors. Inhibition of type I and II PRMTs is synergistic with PARP inhibition regardless of homologous recombination function, but type I PRMT inhibition is more toxic to non-malignant cells. Finally, we demonstrate that the combination of PARP and PRMT5 inhibition improves survival in both BRCA-mutant and wild-type patient-derived xenografts without toxicity. Taken together, these results demonstrate that PRMT5 inhibition may be a well-tolerated approach to sensitize tumors to PARP inhibition.


Asunto(s)
Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Línea Celular , Replicación del ADN , Arginina/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/uso terapéutico , Proteínas Represoras/metabolismo
5.
Cell Chem Biol ; 30(11): 1334-1336, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37977128

RESUMEN

The development of KRAS inhibitors was a remarkable feat, yet their efficacy is limited by inevitable resistance. In the September issue of Science, Lv et al.1 demonstrate how KRAS-driven cancers rewire signaling to restore protein homeostasis and acquire resistance to KRAS inhibitors with implications for novel combination therapeutic strategies.


Asunto(s)
Neoplasias , Proteostasis , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Transducción de Señal , Mutación
6.
Cell Rep Med ; 4(11): 101255, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37909041

RESUMEN

Defects in homologous recombination DNA repair (HRD) both predispose to cancer development and produce therapeutic vulnerabilities, making it critical to define the spectrum of genetic events that cause HRD. However, we found that mutations in BRCA1/2 and other canonical HR genes only identified 10%-20% of tumors that display genomic evidence of HRD. Using a networks-based approach, we discovered that over half of putative genes causing HRD originated outside of canonical DNA damage response genes, with a particular enrichment for RNA-binding protein (RBP)-encoding genes. These putative drivers of HRD were experimentally validated, cross-validated in an independent cohort, and enriched in cancer-associated genome-wide association study loci. Mechanistic studies indicate that some RBPs are recruited to sites of DNA damage to facilitate repair, whereas others control the expression of canonical HR genes. Overall, this study greatly expands the repertoire of known drivers of HRD, with implications for basic biology, genetic screening, and therapy stratification.


Asunto(s)
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/genética , Estudio de Asociación del Genoma Completo , Proteína BRCA2/genética , Recombinación Homóloga/genética , Proteínas de Unión al ARN/genética
7.
Proc Natl Acad Sci U S A ; 120(17): e2217396120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068235

RESUMEN

Octopamine is a well-established invertebrate neurotransmitter involved in fight or flight responses. In mammals, its function was replaced by epinephrine. Nevertheless, it is present at trace amounts and can modulate the release of monoamine neurotransmitters by a yet unidentified mechanism. Here, through a multidisciplinary approach utilizing in vitro and in vivo models of α-synucleinopathy, we uncovered an unprecedented role for octopamine in driving the conversion from toxic to neuroprotective astrocytes in the cerebral cortex by fostering aerobic glycolysis. Physiological levels of neuron-derived octopamine act on astrocytes via a trace amine-associated receptor 1-Orai1-Ca2+-calcineurin-mediated signaling pathway to stimulate lactate secretion. Lactate uptake in neurons via the monocarboxylase transporter 2-calcineurin-dependent pathway increases ATP and prevents neurodegeneration. Pathological increases of octopamine caused by α-synuclein halt lactate production in astrocytes and short-circuits the metabolic communication to neurons. Our work provides a unique function of octopamine as a modulator of astrocyte metabolism and subsequent neuroprotection with implications to α-synucleinopathies.


Asunto(s)
Octopamina , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Astrocitos/metabolismo , Calcineurina/metabolismo , Lactatos/metabolismo , Mamíferos/metabolismo , Neuroprotección , Neurotransmisores/metabolismo , Octopamina/metabolismo
8.
Nat Commun ; 14(1): 152, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631436

RESUMEN

We recently identified HAPSTR1 (C16orf72) as a key component in a novel pathway which regulates the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding. Here, we identify a functional paralog to HAPSTR1: HAPSTR2. HAPSTR2 formed early in mammalian evolution, via genomic integration of a reverse transcribed HAPSTR1 transcript, and has since been preserved under purifying selection. HAPSTR2, expressed primarily in neural and germline tissues and a subset of cancers, retains established biochemical features of HAPSTR1 to achieve two functions. In normal physiology, HAPSTR2 directly interacts with HAPSTR1, markedly augmenting HAPSTR1 protein stability in a manner independent from HAPSTR1's canonical E3 ligase, HUWE1. Alternatively, in the context of HAPSTR1 loss, HAPSTR2 expression is sufficient to buffer stress signaling and resilience. Thus, we discover a mammalian retrogene which safeguards fitness.


Asunto(s)
Estrés Fisiológico , Ubiquitina-Proteína Ligasas , Animales , Daño del ADN/genética , Mamíferos/genética , Mamíferos/metabolismo , Transducción de Señal/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
9.
Cancer Res ; 83(1): 59-73, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36265133

RESUMEN

Somatic mutations are a major source of cancer development, and many driver mutations have been identified in protein coding regions. However, the function of mutations located in miRNA and their target binding sites throughout the human genome remains largely unknown. Here, we built detailed cancer-specific miRNA regulatory networks across 30 cancer types to systematically analyze the effect of mutations in miRNAs and their target sites in 3' untranslated region (3' UTR), coding sequence (CDS), and 5' UTR regions. A total of 3,518,261 mutations from 9,819 samples were mapped to miRNA-gene interactions (mGI). Mutations in miRNAs showed a mutually exclusive pattern with mutations in their target genes in almost all cancer types. A linear regression method identified 148 candidate driver mutations that can significantly perturb miRNA regulatory networks. Driver mutations in 3'UTRs played their roles by altering RNA binding energy and the expression of target genes. Finally, mutated driver gene targets in 3' UTRs were significantly downregulated in cancer and functioned as tumor suppressors during cancer progression, suggesting potential miRNA candidates with significant clinical implications. A user-friendly, open-access web portal (mGI-map) was developed to facilitate further use of this data resource. Together, these results will facilitate novel noncoding biomarker identification and therapeutic drug design targeting the miRNA regulatory networks. SIGNIFICANCE: A detailed miRNA-gene interaction map reveals extensive miRNA-mediated gene regulatory networks with mutation-induced perturbations across multiple cancers, serving as a resource for noncoding biomarker discovery and drug development.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Mutación , Redes Reguladoras de Genes , Regiones no Traducidas 3'/genética
10.
Proc Natl Acad Sci U S A ; 119(27): e2111262119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35776542

RESUMEN

All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses. Integrating dependency and stress perturbation transcriptomic data, we illuminated a network of genes with vital functions spanning diverse stress contexts. Analyses for central regulators of this network nominated C16orf72/HAPSTR1, an evolutionarily ancient gene critical for the fitness of cells reliant on multiple stress response pathways. We found that HAPSTR1 plays a pleiotropic role in cellular stress signaling, functioning to titrate various specialized cell-autonomous and paracrine stress response programs. This function, while dispensable to unstressed cells and nematodes, is essential for resilience in the presence of stressors ranging from DNA damage to starvation and proteotoxicity. Mechanistically, diverse stresses induce HAPSTR1, which encodes a protein expressed as two equally abundant isoforms. Perfectly conserved residues in a domain shared between HAPSTR1 isoforms mediate oligomerization and binding to the ubiquitin ligase HUWE1. We show that HUWE1 is a required cofactor for HAPSTR1 to control stress signaling and that, in turn, HUWE1 feeds back to ubiquitinate and destabilize HAPSTR1. Altogether, we propose that HAPSTR1 is a central rheostat in a network of pathways responsible for cellular adaptability, the modulation of which may have broad utility in human disease.


Asunto(s)
Daño del ADN , Aptitud Genética , Proteínas Nucleares , Estrés Fisiológico , Secuencias de Aminoácidos , Animales , Línea Celular Tumoral , Secuencia Conservada , Daño del ADN/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios Proteicos , Transducción de Señal/genética , Estrés Fisiológico/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
Mol Cell ; 82(17): 3284-3298.e7, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772404

RESUMEN

Bicarbonate (HCO3-) ions maintain pH homeostasis in eukaryotic cells and serve as a carbonyl donor to support cellular metabolism. However, whether the abundance of HCO3- is regulated or harnessed to promote cell growth is unknown. The mechanistic target of rapamycin complex 1 (mTORC1) adjusts cellular metabolism to support biomass production and cell growth. We find that mTORC1 stimulates the intracellular transport of HCO3- to promote nucleotide synthesis through the selective translational regulation of the sodium bicarbonate cotransporter SLC4A7. Downstream of mTORC1, SLC4A7 mRNA translation required the S6K-dependent phosphorylation of the translation factor eIF4B. In mTORC1-driven cells, loss of SLC4A7 resulted in reduced cell and tumor growth and decreased flux through de novo purine and pyrimidine synthesis in human cells and tumors without altering the intracellular pH. Thus, mTORC1 signaling, through the control of SLC4A7 expression, harnesses environmental bicarbonate to promote anabolic metabolism, cell biomass, and growth.


Asunto(s)
Bicarbonatos , Diana Mecanicista del Complejo 1 de la Rapamicina , Nucleótidos , Simportadores de Sodio-Bicarbonato , Bicarbonatos/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nucleótidos/biosíntesis , Fosforilación , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo
12.
Sci Adv ; 8(11): eabj6526, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294249

RESUMEN

Heat shock factor 1 (HSF1) is well known for its role in the heat shock response (HSR), where it drives a transcriptional program comprising heat shock protein (HSP) genes, and in tumorigenesis, where it drives a program comprising HSPs and many noncanonical target genes that support malignancy. Here, we find that HSF2, an HSF1 paralog with no substantial role in the HSR, physically and functionally interacts with HSF1 across diverse types of cancer. HSF1 and HSF2 have notably similar chromatin occupancy and regulate a common set of genes that include both HSPs and noncanonical transcriptional targets with roles critical in supporting malignancy. Loss of either HSF1 or HSF2 results in a dysregulated response to nutrient stresses in vitro and reduced tumor progression in cancer cell line xenografts. Together, these findings establish HSF2 as a critical cofactor of HSF1 in driving a cancer cell transcriptional program to support the anabolic malignant state.

13.
Cell Chem Biol ; 29(3): 358-372.e5, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34525344

RESUMEN

Triple-negative breast cancer (TNBC) is the breast cancer subtype with the poorest clinical outcome. The PIM family of kinases has emerged as a factor that is both overexpressed in TNBC and associated with poor outcomes. Preclinical data suggest that TNBC with an elevated MYC expression is sensitive to PIM inhibition. However, clinical observations indicate that the efficacy of PIM inhibitors as single agents may be limited, suggesting the need for combination therapies. Our screening effort identifies PIM and the 20S proteasome inhibition as the most synergistic combination. PIM inhibitors, when combined with proteasome inhibitors, induce significant antitumor effects, including abnormal accumulation of poly-ubiquitinated proteins, increased proteotoxic stress, and the inability of NRF1 to counter loss in proteasome activity. Thus, the identified combination could represent a rational combination therapy against MYC-overexpressing TNBC that is readily translatable to clinical investigations.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Proliferación Celular , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-pim-1 , Neoplasias de la Mama Triple Negativas/metabolismo
14.
Acta Neuropathol ; 142(5): 887-898, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34499219

RESUMEN

Myositis comprises a heterogeneous group of skeletal muscle disorders which converge on chronic muscle inflammation and weakness. Our understanding of myositis pathogenesis is limited, and many myositis patients lack effective therapies. Using muscle biopsy transcriptome profiles from 119 myositis patients (spanning major clinical and serological disease subtypes) and 20 normal controls, we generated a co-expression network of 8101 dynamically regulated transcripts. This network organized the myositis transcriptome into a map of gene expression modules representing interrelated biological processes and disease signatures. Universally myositis-upregulated network modules included muscle regeneration, specific cytokine signatures, the acute phase response, and neutrophil degranulation. Universally myositis-suppressed pathways included a specific subset of myofilaments, the mitochondrial envelope, and nuclear isoforms of the anti-apoptotic humanin protein. Myositis subtype-specific modules included type 1 interferon signaling and titin (dermatomyositis), RNA processing (antisynthetase syndrome), and vasculogenesis (inclusion body myositis). Importantly, therapies exist to target influential proteins in many myositis-dysregulated modules, and nearly all modules contained understudied proteins and non-coding RNAs - many of which were extraordinarily dysregulated in myositis and may represent novel therapeutic targets. Finally, we apply our network to patient classification, finding that a deep learning algorithm trained on patient-level network "images" successfully assigned patients to clinical groups and further into molecular subclusters. Altogether, we provide a global resource to probe and contextualize differential gene expression in myositis.


Asunto(s)
Aprendizaje Profundo , Redes Reguladoras de Genes/genética , Miositis/genética , Transcriptoma , Humanos , Miositis/clasificación , Análisis de Secuencia de ARN/métodos
15.
Life Sci Alliance ; 4(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33328249

RESUMEN

Genetic coessentiality analysis, a computational approach which identifies genes sharing a common effect on cell fitness across large-scale screening datasets, has emerged as a powerful tool to identify functional relationships between human genes. However, widespread implementation of coessentiality to study individual genes and pathways is limited by systematic biases in existing coessentiality approaches and accessibility barriers for investigators without computational expertise. We created FIREWORKS, a method and interactive tool for the construction and statistical analysis of coessentiality networks centered around gene(s) provided by the user. FIREWORKS incorporates a novel bias reduction approach to reduce false discoveries, enables restriction of coessentiality analyses to custom subsets of cell lines, and integrates multiomic and drug-gene interaction datasets to investigate and target contextual gene essentiality. We demonstrate the broad utility of FIREWORKS through case vignettes investigating gene function and specialization, indirect therapeutic targeting of "undruggable" proteins, and context-specific rewiring of genetic networks.


Asunto(s)
Biología Computacional/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genómica , Programas Informáticos , Sistemas CRISPR-Cas , Marcación de Gen , Sitios Genéticos , Genómica/métodos , Humanos , Modelos Biológicos
16.
Nat Commun ; 11(1): 5722, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184288

RESUMEN

Chemical-genetic interaction profiling in model organisms has proven powerful in providing insights into compound mechanism of action and gene function. However, identifying chemical-genetic interactions in mammalian systems has been limited to low-throughput or computational methods. Here, we develop Quantitative and Multiplexed Analysis of Phenotype by Sequencing (QMAP-Seq), which leverages next-generation sequencing for pooled high-throughput chemical-genetic profiling. We apply QMAP-Seq to investigate how cellular stress response factors affect therapeutic response in cancer. Using minimal automation, we treat pools of 60 cell types-comprising 12 genetic perturbations in five cell lines-with 1440 compound-dose combinations, generating 86,400 chemical-genetic measurements. QMAP-Seq produces precise and accurate quantitative measures of acute drug response comparable to gold standard assays, but with increased throughput at lower cost. Moreover, QMAP-Seq reveals clinically actionable drug vulnerabilities and functional relationships involving these stress response factors, many of which are activated in cancer. Thus, QMAP-Seq provides a broadly accessible and scalable strategy for chemical-genetic profiling in mammalian cells.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Fenotipo , Animales , Neoplasias de la Mama/genética , Ingeniería Celular , Línea Celular Tumoral , Supervivencia Celular , Ensayos de Selección de Medicamentos Antitumorales , Redes Reguladoras de Genes , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Neoplasias/genética , Biología de Sistemas/métodos
17.
Cancer Discov ; 10(9): 1388-1409, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32444465

RESUMEN

Splicing alterations are common in diseases such as cancer, where mutations in splicing factor genes are frequently responsible for aberrant splicing. Here we present an alternative mechanism for splicing regulation in T-cell acute lymphoblastic leukemia (T-ALL) that involves posttranslational stabilization of the splicing machinery via deubiquitination. We demonstrate there are extensive exon skipping changes in disease, affecting proteasomal subunits, cell-cycle regulators, and the RNA machinery. We present that the serine/arginine-rich splicing factors (SRSF), controlling exon skipping, are critical for leukemia cell survival. The ubiquitin-specific peptidase 7 (USP7) regulates SRSF6 protein levels via active deubiquitination, and USP7 inhibition alters the exon skipping pattern and blocks T-ALL growth. The splicing inhibitor H3B-8800 affects splicing of proteasomal transcripts and proteasome activity and acts synergistically with proteasome inhibitors in inhibiting T-ALL growth. Our study provides the proof-of-principle for regulation of splicing factors via deubiquitination and suggests new therapeutic modalities in T-ALL. SIGNIFICANCE: Our study provides a new proof-of-principle for posttranslational regulation of splicing factors independently of mutations in aggressive T-cell leukemia. It further suggests a new drug combination of splicing and proteasomal inhibitors, a concept that might apply to other diseases with or without mutations affecting the splicing machinery.This article is highlighted in the In This Issue feature, p. 1241.


Asunto(s)
Empalme Alternativo/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Fosfoproteínas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Factores de Empalme Serina-Arginina/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Empalme Alternativo/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Sinergismo Farmacológico , Exones/genética , Humanos , Células Jurkat , Masculino , Ratones , Piperazinas/farmacología , Piperazinas/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Prueba de Estudio Conceptual , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Adv Exp Med Biol ; 1243: 69-85, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32297212

RESUMEN

Heat Shock Factor 1 (HSF1), the master transcriptional regulator of the heat shock response (HSR), was first cloned more than 30 years ago. Most early research interrogating the role that HSF1 plays in biology focused on its cytoprotective functions, as a factor that promotes the survival of organisms by protecting against the proteotoxicity associated with neurodegeneration and other pathological conditions. However, recent studies have revealed a deleterious role of HSF1, as a factor that is co-opted by cancer cells to promote their own survival to the detriment of the organism. In cancer, HSF1 operates in a multifaceted manner to promote oncogenic transformation, proliferation, metastatic dissemination, and anti-cancer drug resistance. Here we review our current understanding of HSF1 activation and function in malignant progression and discuss the potential for HSF1 inhibition as a novel anticancer strategy. Collectively, this ever-growing body of work points to a prominent role of HSF1 in nearly every aspect of carcinogenesis.


Asunto(s)
Carcinogénesis , Factores de Transcripción del Choque Térmico/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Transformación Celular Neoplásica , Respuesta al Choque Térmico , Humanos
19.
Blood ; 130(12): 1430-1440, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28694326

RESUMEN

Cutaneous T-cell lymphoma (CTCL) is an incurable non-Hodgkin lymphoma of the skin-homing T cell. In early-stage disease, lesions are limited to the skin, but in later-stage disease, the tumor cells can escape into the blood, the lymph nodes, and at times the visceral organs. To clarify the genomic basis of CTCL, we performed genomic analysis of 220 CTCLs. Our analyses identify 55 putative driver genes, including 17 genes not previously implicated in CTCL. These novel mutations are predicted to affect chromatin (BCOR, KDM6A, SMARCB1, TRRAP), immune surveillance (CD58, RFXAP), MAPK signaling (MAP2K1, NF1), NF-κB signaling (PRKCB, CSNK1A1), PI-3-kinase signaling (PIK3R1, VAV1), RHOA/cytoskeleton remodeling (ARHGEF3), RNA splicing (U2AF1), T-cell receptor signaling (PTPRN2, RLTPR), and T-cell differentiation (RARA). Our analyses identify recurrent mutations in 4 genes not previously identified in cancer. These include CK1α (encoded by CSNK1A1) (p.S27F; p.S27C), PTPRN2 (p.G526E), RARA (p.G303S), and RLTPR (p.Q575E). Last, we functionally validate CSNK1A1 and RLTPR as putative oncogenes. RLTPR encodes a recently described scaffolding protein in the T-cell receptor signaling pathway. We show that RLTPR (p.Q575E) increases binding of RLTPR to downstream components of the NF-κB signaling pathway, selectively upregulates the NF-κB pathway in activated T cells, and ultimately augments T-cell-receptor-dependent production of interleukin 2 by 34-fold. Collectively, our analysis provides novel insights into CTCL pathogenesis and elucidates the landscape of potentially targetable gene mutations.


Asunto(s)
Genómica , Linfoma Cutáneo de Células T/genética , Proteínas de Microfilamentos/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Secuencia de Bases , Genoma Humano , Células HEK293 , Humanos , Células Jurkat , Proteínas de Microfilamentos/química , Mutación/genética , FN-kappa B/metabolismo , Oncogenes , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal/genética , Proteína de Unión al GTP rhoA/genética
20.
Proc Natl Acad Sci U S A ; 113(21): 6065-70, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27114519

RESUMEN

Prion proteins provide a unique mode of biochemical memory through self-perpetuating changes in protein conformation and function. They have been studied in fungi and mammals, but not yet identified in plants. Using a computational model, we identified candidate prion domains (PrDs) in nearly 500 plant proteins. Plant flowering is of particular interest with respect to biological memory, because its regulation involves remembering and integrating previously experienced environmental conditions. We investigated the prion-forming capacity of three prion candidates involved in flowering using a yeast model, where prion attributes are well defined and readily tested. In yeast, prions heritably change protein functions by templating monomers into higher-order assemblies. For most yeast prions, the capacity to convert into a prion resides in a distinct prion domain. Thus, new prion-forming domains can be identified by functional complementation of a known prion domain. The prion-like domains (PrDs) of all three of the tested proteins formed higher-order oligomers. Uniquely, the Luminidependens PrD (LDPrD) fully replaced the prion-domain functions of a well-characterized yeast prion, Sup35. Our results suggest that prion-like conformational switches are evolutionarily conserved and might function in a wide variety of normal biological processes.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Modelos Moleculares , Proteínas Priónicas/química , Factores de Terminación de Péptidos/química , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA