Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(7): 8592-8603, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32040290

RESUMEN

Graphene-based inks are becoming increasingly attractive for printing low-cost and flexible electrical circuits due to their high electrical conductivity, biocompatibility, and manufacturing scalability. Conventional graphene printing techniques, such as screen and inkjet printing, are limited by stringent ink viscosity requirements properties and large as-printed line width that impedes the performance of printed biosensors. Here, we report an aerosol-jet-printed (AJP) graphene-based immunosensor capable of monitoring two distinct cytokines: interferon gamma (IFN-γ) and interleukin 10 (IL-10). Interdigitated electrodes (IDEs) with 40 µm finger widths were printed from graphene-nitrocellulose ink on a polyimide substrate. The IDEs were annealed in CO2 to introduce reactive oxygen species on the graphene surface that act as chemical handles to covalently link IFN-γ and IL-10 antibodies to the graphene surfaces. The resultant AJP electrochemical immunosensors are capable of monitoring cytokines in serum with wide sensing range (IFN-γ: 0.1-5 ng/mL; IL-10: 0.1-2 ng/mL), low detection limit (IFN-γ: 25 pg/ml and IL-10: 46 pg/ml) and high selectivity (antibodies exhibited minimal cross-reactivity with each other and IL-6) without the need for sample prelabeling or preconcentration. Moreover, these biosensors are mechanically flexible with minimal change in signal output after 250 bending cycles over a high curvature (Φ = 5 mm). Hence, this technology could be applied to numerous electrochemical applications that require low-cost electroactive circuits that are disposable and/or flexible.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Grafito/química , Interferón gamma/sangre , Interleucina-10/sangre , Nanoestructuras/química , Impresión Tridimensional/instrumentación , Aerosoles/química , Animales , Anticuerpos/inmunología , Técnicas Biosensibles/instrumentación , Dióxido de Carbono/química , Bovinos , Colodión/química , Conductividad Eléctrica , Técnicas Electroquímicas/instrumentación , Electrodos , Imidas/química , Tinta , Interferón gamma/inmunología , Interleucina-10/inmunología , Límite de Detección , Microscopía de Fuerza Atómica , Microscopía Confocal , Nanoestructuras/ultraestructura , Polímeros , Especies Reactivas de Oxígeno/química , Análisis Espectral , Espectrometría Raman , Propiedades de Superficie
2.
ACS Omega ; 4(3): 5197-5203, 2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459692

RESUMEN

Intermetallics are atomically ordered crystalline compounds containing two or more main group and transition metals. In addition to their rich crystal chemistry, intermetallics display unique properties of interest for a variety of applications, including superconductivity, hydrogen storage, and catalysis. Because of the presence of metals with a wide range of reduction potentials, the controlled synthesis of intermetallics can be difficult. Recently, soft chemical syntheses such as the modified polyol and ship-in-a-bottle methods have helped advance the preparation of these materials. However, phase-segregated products and complex multistep syntheses remain common. Here, we demonstrate the use of heterobimetallic single-source precursors for the synthesis of 10-15 and 11-15 binary intermetallics. The coordination environment of the precursor, as well as the exact temperature used play a critical role in determining the crystalline intermetallic phase that is produced, highlighting the potential versatility of this approach in the synthesis of a variety of compounds. Furthermore, we show that a recently developed novel plasma-processing technique is successful in removing the surface graphitic carbon observed in some of the prepared compounds. This new single-source precursor approach is a powerful addition to the synthesis of atomically ordered intermetallic compounds and will help facilitate their further study and development for future applications.

3.
ACS Appl Mater Interfaces ; 11(32): 29231-29241, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31330098

RESUMEN

Outdoor applications of superhydrophobic coatings require synthetic approaches that allow their simple, fast, scalable, and environmentally benign deployment on large, heterogeneous surfaces and their rapid regeneration in situ. We recently showed that the thermal degradation of silicones by flames fulfills these characteristics by spontaneously structuring silicone surfaces into a hierarchical, textured structure that provides wear-resistant, healable superhydrophobicity. This paper elucidates how flame processing-a simple, rapid, and out-of-equilibrium process-can be so counterintuitively reliable and robust in producing such a complex structure. A comprehensive study of the effect of the processing speed and flame temperature on the chemical and physical properties of the coatings yielded three surprising results. (i) Three thermal degradation mechanisms drive the surface texturing: depolymerization (in the O2-rich conditions of the surface), decomposition (in the O2-poor conditions found a few micrometers from the surface), and pyrolysis at excessive temperatures. (ii) The operational condition is delimited by the onset of the depolymerization at low temperatures and the onset of pyrolysis at high temperatures. (iii) The remarkably wide operational conditions and robustness of this approach result from self-limiting growth and oxidation of the silicone particles that are responsible for the surface texturing and in the extent of their deposition. As a result of this analysis we show that superhydrophobic surfaces can be produced or regenerated with this approach at a speed of 15 cm s-1 (i.e., the length of an airport runway in ∼4.5 h).

4.
J Phys Chem B ; 123(23): 4943-4949, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31095376

RESUMEN

Fluorescence correlation spectroscopy (FCS) is applied to investigate the diffusional dynamics of hydrophilic (Atto 590) and amphiphilic (DiD) fluorophores in a series of alkylphosphonium ionic liquid (IL) films ([P4448][Cl], [P6668][Cl], [P66614][Cl], and [P66614][NTf2]) in order to determine diffusional parameters and to elucidate nanoscale structural heterogeneities within the IL. From the measured correlation functions, the diffusion coefficients of the fluorescent molecules are estimated, rendering values that span from 0.39 to 1.2 and 0.146 to 5.2 µm2/s for Atto 590 and DiD, respectively. An increase in the diffusion coefficient values is correlated to the increase in the alkyl chain length, which in turn is correlated with a decrease in their viscosity. Interestingly, deviations from Brownian diffusion behavior of the fluorescent probes in the ILs are observed, showing a time-dependent diffusion coefficient in most of the cases. These deviations can be attributed to the presence of nanoscale structural heterogeneities in the tetraalkylphosphonium ILs. These results experimentally confirm the presence of nanosegregation in tetraalkylphosphonium ILs, which has been previously observed in molecular dynamics studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...