Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 305(8): H1149-57, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23934855

RESUMEN

Dyslipidemia is a primary risk factor for cardiovascular disease, but the specific mechanisms that determine the localization of atherosclerotic plaques in arteries are not well defined. Triglyceride-rich lipoproteins (TGRL) isolated from human plasma after a high-fat meal modulate TNF-α-induced VCAM-1 expression in cultured human aortic endothelial cells (HAECs) via an interferon regulatory factor (IRF)-1-dependent transcriptional mechanism. We examined whether fluid shear stress acts as a mediator of IRF-1-dependent VCAM-1 expression in response to cytokine and dietary lipids. IRF-1 and VCAM-1 were examined by immunofluorescence in TNF-α-stimulated HAEC monolayers exposed to TGRL and a linear gradient of shear stress ranging from 0 to 16 dyn/cm(2) in a microfluidic device. Shear stress alone modulated TNF-α-induced VCAM-1 expression, eliciting a 150% increase at low shear stress (2 dyn/cm(2)) and a 70% decrease at high shear stress (12 dyn/cm(2)) relative to static. These differences correlated with a 60% increase in IRF-1 expression under low shear stress and a 40% decrease under high shear stress. The addition of TGRL along with cytokine activated a fourfold increase in VCAM-1 expression and a twofold increase in IRF-1 expression. The combined effect of shear stress and TGRL on the upregulation of membrane VCAM-1 was abolished by transfection of HAECs with IRF-1-specific small interfering RNA. In a healthy swine model, elevated levels of endothelial IRF-1 were also observed within atherosusceptible regions of the aorta by Western blot analysis and immunohistochemistry, implicating arterial hemodynamics in the regulation of IRF-1 expression. These data demonstrate direct roles for fluid shear stress and postprandial TGRL from human serum in the regulation of IRF-1 expression and downstream inflammatory responses in HAECs.


Asunto(s)
Aorta/metabolismo , Grasas de la Dieta/farmacología , Células Endoteliales/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Estrés Mecánico , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Aorta/citología , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Factor 1 Regulador del Interferón/efectos de los fármacos , Periodo Posprandial , Porcinos , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA