Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37762154

RESUMEN

Preterm birth (PB) is a leading cause of perinatal morbidity and mortality. PB prediction is performed by measuring cervical length, with a detection rate of around 70%. Although it is known that a cytokine-mediated inflammatory process is involved in the pathophysiology of PB, none screening method implemented in clinical practice includes cytokine levels as a predictor variable. Here, we quantified cytokines in cervical-vaginal mucus of pregnant women (18-23.6 weeks of gestation) with high or low risk for PB determined by cervical length, also collecting relevant obstetric information. IL-2, IL-6, IFN-γ, IL-4, and IL-10 were significantly higher in the high-risk group, while IL-1ra was lower. Two different models for PB prediction were created using the Random Forest machine-learning algorithm: a full model with 12 clinical variables and cytokine values and the adjusted model, including the most relevant variables-maternal age, IL-2, and cervical length- (detection rate 66 vs. 87%, false positive rate 12 vs. 3.33%, false negative rate 28 vs. 6.66%, and area under the curve 0.722 vs. 0.875, respectively). The adjusted model that incorporate cytokines showed a detection rate eight points higher than the gold standard calculator, which may allow us to identify the risk PB risk more accurately and implement strategies for preventive interventions.


Asunto(s)
Nacimiento Prematuro , Embarazo , Recién Nacido , Femenino , Humanos , Nacimiento Prematuro/diagnóstico , Citocinas , Interleucina-2 , Vagina , Cuello del Útero , Moco
2.
Artículo en Inglés | MEDLINE | ID: mdl-34831526

RESUMEN

An altered mitochondrial DNA copy number (mtDNAcn) at birth can be a marker of increased disease susceptibility later in life. Gestational exposure to acute stress, such as that derived from the earthquake experienced on 19 September 2017 in Mexico City, could be associated with changes in mtDNAcn at birth. Our study used data from the OBESO (Biochemical and Epigenetic Origins of Overweight and Obesity) perinatal cohort in Mexico City. We compared the mtDNAcn in the umbilical cord blood of 22 infants born before the earthquake, 24 infants whose mothers were pregnant at the time of the earthquake (exposed), and 37 who were conceived after the earthquake (post-earthquake). We quantified mtDNAcn by quantitative real-time polymerase chain reaction normalized with a nuclear gene. We used a linear model adjusted by maternal age, body mass index, socioeconomic status, perceived stress, and pregnancy comorbidities. Compared to non-exposed newborns (mean ± SD mtDNAcn: 0.740 ± 0.161), exposed and post-earthquake newborns (mtDNAcn: 0.899 ± 0.156 and 0.995 ± 0.169, respectively) had increased mtDNAcn, p = 0.001. The findings of this study point at mtDNAcn as a potential biological marker of acute stress and suggest that experiencing an earthquake during pregnancy or before gestation can have programing effects in the unborn child. Long-term follow-up of newborns to women who experience stress prenatally, particularly that derived from a natural disaster, is warranted.


Asunto(s)
ADN Mitocondrial , Terremotos , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Femenino , Humanos , Recién Nacido , Exposición Materna , Mitocondrias , Embarazo
3.
Nutrients ; 12(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708345

RESUMEN

Mitochondria are active independent organelles that not only meet the cellular energy requirement but also regulate central cellular activities. Mitochondria can play a critical role in physiological adaptations during pregnancy. Differences in mitochondrial function have been found between healthy and complicated pregnancies. Pregnancy signifies increased nutritional requirements to support fetal growth and the metabolism of maternal and fetal tissues. Nutrient availability regulates mitochondrial metabolism, where excessive macronutrient supply could lead to oxidative stress and contribute to mitochondrial dysfunction, while micronutrients are essential elements for optimal mitochondrial processes, as cofactors in energy metabolism and/or as antioxidants. Inadequate macronutrient and micronutrient consumption can result in adverse pregnancy outcomes, possibly through mitochondrial dysfunction, by impairing energy supply, one-carbon metabolism, biosynthetic pathways, and the availability of metabolic co-factors which modulate the epigenetic processes capable of establishing significant short- and long-term effects on infant health. Here, we review the importance of macronutrients and micronutrients on mitochondrial function and its influence on maternal and infant health.


Asunto(s)
Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Salud del Lactante , Fenómenos Fisiológicos Nutricionales del Lactante/fisiología , Salud Materna , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Intercambio Materno-Fetal/fisiología , Micronutrientes , Mitocondrias/metabolismo , Mitocondrias/fisiología , Nutrientes , Necesidades Nutricionales , Embarazo/metabolismo , Embarazo/fisiología , Epigénesis Genética , Femenino , Humanos , Recién Nacido , Masculino , Mitocondrias/genética , Estrés Oxidativo , Vitaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...