Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Evol ; 88(3): 284-291, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32140772

RESUMEN

On ancient Earth, environmental conditions favored prebiotic chemical reactions. In the Archean, some molecules with conjugated rings might have been synthesized, displaying structural stability in the Archean in the presence of ionizing radiation and hydration-dehydration events. Additionally, it is suggested that on ancient Earth, calcite was a common mineral promoting organic compound synthesis. In the present work a study of the interaction of amino acid mixtures with the (104) surface of calcite is presented. Our preliminary results show the abiotic synthesis of alloxazine (a flavin with relevant photochemical properties). Computer simulations were performed in HyperChem 8.0.1. by means of MM+ molecular mechanics and PM3 semi-empirical methods, in 27 possible amino acid trimers of alanine, glycine and lysine. Alloxazine formation is possible by the gamma irradiation of amino acids. The computer simulations show that trimers GGG and GGA promote the further transformation from diketopiperazines (DKP's) and KGK to alloxazine. The computer simulations with free radicals are not stable when alloxazine is interacting with the calcite surface. Experiments in anoxygenic environments with hydration-dehydration events in gamma irradiated samples allow the abiotic formation of flavins, DKP's and a heterocycle compound with possible relevance in prebiotic chemistry.


Asunto(s)
Aminoácidos/efectos de la radiación , Evolución Química , Flavinas/síntesis química , Rayos gamma , Aminoácidos/química , Simulación por Computador , Planeta Tierra , Islandia , Modelos Químicos , Origen de la Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA