Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Leukoc Biol ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552209

RESUMEN

The elusive nature of the liver immune system in newborns remains an important challenge, casting a shadow over our understanding of how to effectively treat and prevent diseases in children. Therefore, deeper exploration into the intricacies of neonatal immunology might be crucial for improved pediatric healthcare. Using liver intravital microscopy, we unveiled a significant population of granulocytes in the hepatic parenchyma of fetuses and newborns. Utilizing high-dimensional immunophenotyping, we showed dynamic alterations predominantly in granulocytes during neonatal development. Liver intravital microscopy from birth through adulthood captures real-time dynamics, showing a substantial presence of Ly6G + cells that persisted significantly up to 2 weeks of age. Using CyTOF, we characterized neonatal Ly6G + cells as neutrophils, confirmed by morphology and immunohistochemistry. Surprisingly, the embryonic liver hosts a distinct population of neutrophils established as early as the second gestational week, challenging conventional notions about their origin. Additionally, we observed that embryonic neutrophils occupy preferentially the extravascular space, indicating their early establishment within the liver. Hepatic neutrophils in embryos and neonates form unique cell clusters, persisting during the initial days of life, while reduced migratory capabilities in neonates are observed, potentially compensating with increased reactive oxygen species (ROS) release in response to stimuli. Finally, in vivo imaging of acute neutrophil behavior in a newborn mouse, subjected to focal liver necrosis, unveils that neonatal neutrophils exhibit a reduced migratory response. The study provides unprecedented insights into the intricate interplay of neutrophils within the liver, shedding light on their functional and dynamic characteristics during development.

2.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38503568

RESUMEN

AIMS: The purpose was to evaluate the antimicrobial activity of highly soluble polypyrrole (Hs-PPy), alone or combined with oxacillin, as well as its antibiofilm potential against methicillin-resistant Staphylococcus aureus strains. Furthermore, the in silico inhibitory mechanism in efflux pumps was also investigated. METHODS AND RESULTS: Ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and two reference strains were used. Antimicrobial activity was determined by broth microdilution, and the combination effect with oxacillin was evaluated by the checkerboard assay. The biofilm formation capacity of MRSA and the interference of Hs-PPy were evaluated. The inhibitory action of Hs-PPy on the efflux pump was evaluated in silico through molecular docking. Hs-PPy showed activity against the isolates, with inhibitory action between 62.5 and 125 µg ml-1 and bactericidal action at 62.5 µg ml-1, as well as synergism in association with oxacillin. The isolates ranged from moderate to strong biofilm producers, and Hs-PPy interfered with the formation of this structure, but not with mature biofilm. There was no in silico interaction with the efflux protein EmrD, the closest homolog to NorA. CONCLUSIONS: Hs-PPy interferes with biofilm formation by MRSA, has synergistic potential, and is an efflux pump inhibitor.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Polímeros/farmacología , Pirroles/farmacología , Simulación del Acoplamiento Molecular , Oxacilina/farmacología , Antiinfecciosos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
3.
iScience ; 26(10): 107947, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37841583

RESUMEN

Invariant Natural Killer T (iNKT) cell activation by α-galactosylceramide (αGC) potentiates cytotoxic immune responses against tumors. However, αGC-induced liver injury is a limiting factor for iNKT-based immunotherapy. Although adrenergic receptor stimulation is an important immunosuppressive signal that curbs tissue damage induced by inflammation, its effect on the antitumor activity of invariant Natural Killer T (iNKT) cells remains unclear. We use mouse models and pharmacological tools to show that the stimulation of the sympathetic nervous system (SNS) inhibits αGC-induced liver injury without impairing iNKT cells' antitumoral functions. Mechanistically, SNS stimulation prevents the collateral effect of TNF-α production by iNKT cells and neutrophil accumulation in hepatic parenchyma. Our results suggest that the modulation of the adrenergic signaling can be a complementary approach to αGC-based immunotherapy to mitigate iNKT-induced liver injury without compromising its antitumoral activity.

4.
Reprod Toxicol ; 121: 108471, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37717671

RESUMEN

Caffeine is commonly consumed by pregnant women to avoid fatigue or as a habit. However, it is not clearly determined its side effects to the conceptuses. This study evaluated placental morphofunctional alterations after maternal chronic caffeine intake and the effects on fetal growth. Female Swiss mice received, via gavage, caffeine doses (either 60, 120 or 240 mg/kg/day) seven days before mating until gestational days-(GD) 11.5 or 17.5. Fetal biometrical parameters were assessed, and placentae were either submitted to histomorphometrical or molecular evaluation of angiogenesis (placental growth factor-1[PlGF-1]), apoptosis (Caspase-3) and proliferation (Ki-67) markers (evaluated in Swiss dams) and to intravital microscopy (evaluated in C57BL/6 dams). Caffeine exposed fetuses exhibited intrauterine growth restriction in a sex-dependent manner, with greater commitment of female fetuses (P < 0.05). In addition, placentae from dams that received 120 mg/kg/day showed less irrigation by maternal blood and greater development of fetal vasculature, characterized by higher number of larger vessels (P < 0.05). Although no effects on apoptosis (Caspase-3) and angiogenesis (PlGF-1) were observed, dams treated with 60 mg/kg/day showed greater placental cell proliferation (Ki-67 staining) at GD 11.5 (P < 0.05). The group treated with 240 mg/kg/day exhibited only one pregnant dam for each gestational age, suggesting that this high caffeine consumption may compromise fertility. Taken together, even in the doses currently ingested by many pregnant women, caffeine has detrimental effects on placental vasculature and fetal development in mice. Therefore, our results strongly suggest that caffeine consumption in human pregnancies greater than the recommended doses should be avoided.

5.
Nutrition ; 115: 112092, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37549454

RESUMEN

OBJECTIVES: Acute physical exercise acts as a metabolic stressor, promoting activation of the immune system, and this response could be relevant in the adipose tissue remodeling process. In addition, some cytokines have important functions in lipolysis. Because chronic exercise improves obesity-related metabolic and inflammatory dysfunction, herein we investigated the effect of acute exercise on the inflammatory responses in the adipose tissues of lean and obese mice. METHODS: Lean mice were fed a standard chow diet, whereas obese mice were fed a high-refined carbohydrate diet for 8 wk. Both groups were subjected to 60 min of moderate-intensity exercise. RESULTS: In the epididymal adipose tissue of lean mice, exercise enhanced interleukin (IL)-6 and tumor necrosis factor-α levels, which correlated positively with increased serum free fatty acid concentrations. In vivo confocal imaging of epididymal adipose tissue vessels revealed higher recruitment of neutrophils after exercise. Also, the number of leukocytes expressing CD11b+F480- was elevated 6 h after exercise. Similarly, the chemokine (C-X-C motif) ligand 1 level increased at 6 h and remained high until 24 h after exercise. Myeloperoxidase activity was increased at 6, 12, and 24 h after exercise. Surprisingly, however, no changes were observed in epididymal adipose tissue from obese mice, considering proinflammatory cytokines (IL-6 and tumor necrosis factor-α). On the other hand, IL-13, IL-4, and IL-10 levels were higher in obese mice after exercise. CONCLUSIONS: These data suggest that acute exercise promotes an inflammatory response in the adipose tissue of lean mice that is observed as part of its role in adipose tissue remodeling. In contrast, acute exercise promotes an antiinflammatory response in adipose tissue from obese mice, likely as an important tool for restoring homeostasis.

6.
J Endod ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37633518

RESUMEN

INTRODUCTION: Bisphosphonates are antiresorptive drugs used worldwide to treat systemic bone pathologies. This study aimed to assess the impact of zoledronic acid on the progression of induced apical periodontitis and the expression of cytokines interleukin (IL)-1ß, IL-10, IL-6, and tumor necrosis factor alpha (TNF-α) in a mouse model. METHODS: Sixteen female isogenic BALB/c mice 6 weeks of age were distributed into 2 groups: mice with induced apical periodontitis (the AP group, n = 8) and mice with induced apical periodontitis treated with zoledronic acid (the AP-ZA group, n = 8). The AP-ZA group received a dose of 125 µg/kg zoledronic acid diluted in sterile saline solution administered intraperitoneally once a week for 4 weeks before pulp exposure, whereas the AP group received only saline solution. Pulp exposures were performed on the maxillary first molars for the induction of apical periodontitis, and mice were euthanized after 7 and 21 days. The jaws were collected; scanned using micro-computed tomographic imaging; and processed for polymerase chain reaction analysis of IL-1ß, IL-10, IL-6, and TNF-α. The Student t test was performed for parametric data, and Mann-Whitney U tests were used for nonparametric data. The level of significance was set at 5%. RESULTS: Micro-computed tomographic imaging revealed higher bone resorption in the AP group compared with the AP-ZA group at both time points (P < .05). Real-time polymerase chain reaction demonstrated higher TNF-α expression in the AP group at both time points and higher IL-6 and IL-1ß expression in the AP group at the 7- and 21-day time points, respectively, compared with the AP-ZA group (P < .05). No differences were observed regarding IL-10 expression between the groups. CONCLUSIONS: Zoledronic acid had significant anti-inflammatory and antiresorptive effects on apical periodontitis in mice.

7.
Front Immunol ; 13: 1002919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531990

RESUMEN

Spleen is a key organ for immunologic surveillance, acting as a firewall for antigens and parasites that spread through the blood. However, how spleen leukocytes evolve across the developmental phase, and how they spatially organize and interact in vivo is still poorly understood. Using a novel combination of selected antibodies and fluorophores to image in vivo the spleen immune environment, we described for the first time the dynamics of immune development across postnatal period. We found that spleens from adults and infants had similar numbers and arrangement of lymphoid cells. In contrast, splenic immune environment in newborns is sharply different from adults in almost all parameters analysed. Using this in vivo approach, B cells were the most frequent subtype throughout the development. Also, we revealed how infections - using a model of malaria - can change the spleen immune profile in adults and infants, which could become the key to understanding different severity grades of infection. Our new imaging solutions can be extremely useful for different groups in all areas of biological investigation, paving a way for new intravital approaches and advances.


Asunto(s)
Malaria , Bazo , Adulto , Humanos , Recién Nacido , Microscopía Intravital , Linfocitos , Linfocitos B
8.
Sci Rep ; 12(1): 19805, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396745

RESUMEN

Kupffer cells (KCs) are self-maintained tissue-resident macrophages that line liver sinusoids and play an important role on host defense. It has been demonstrated that upon infection or intense liver inflammation, KCs might be severely depleted and replaced by immature monocytic cells; however, the mechanisms of cell death and the alterations on liver immunity against infections deserves further investigation. We explored the impact of acute Plasmodium infection on KC biology and on the hepatic immune response against secondary infections. Similar to patients, infection with Plasmodium chabaudi induced acute liver damage as determined by serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation. This was associated with accumulation of hemozoin, increased of proinflammatory response and impaired bacterial and viral clearance, which led to pathogen spread to other organs. In line with this, mice infected with Plasmodium had enhanced mortality during secondary infections, which was associated with increased production of mitochondrial superoxide, lipid peroxidation and increased free iron within KCs-hallmarks of cell death by ferroptosis. Therefore, we revealed that accumulation of iron with KCs, triggered by uptake of circulating hemozoin, is a novel mechanism of macrophage depletion and liver inflammation during malaria, providing novel insights on host susceptibility to secondary infections. Malaria can cause severe liver damage, along with depletion of liver macrophages, which can predispose individuals to secondary infections and enhance the chances of death.


Asunto(s)
Coinfección , Malaria , Plasmodium chabaudi , Sobreinfección , Ratones , Animales , Plasmodium chabaudi/fisiología , Macrófagos del Hígado/metabolismo , Coinfección/complicaciones , Malaria/metabolismo , Muerte Celular , Inflamación/metabolismo , Hierro/metabolismo
10.
Front Immunol ; 13: 892114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967353

RESUMEN

Kupffer cells are the primary liver resident immune cell responsible for the liver firewall function, including clearance of bacterial infection from the circulation, as they are strategically positioned inside the liver sinusoid with intimate contact with the blood. Disruption in the tissue-resident macrophage niche, such as in Kupffer cells, can lead to a window of susceptibility to systemic infections, which represents a significant cause of mortality in patients with acetaminophen (APAP) overdose-induced acute liver injury (ALI). However, how Kupffer cell niche disruption increases susceptibility to systemic infections in ALI is not fully understood. Using a mouse model of ALI induced by APAP overdose, we found that Kupffer cells upregulated the apoptotic cell death program and were markedly reduced in the necrotic areas during the early stages of ALI, opening the niche for the infiltration of neutrophils and monocyte subsets. In addition, during the resolution phase of ALI, the remaining tissue macrophages with a Kupffer cell morphology were observed forming replicating cell clusters closer to necrotic areas devoid of Kupffer cells. Interestingly, mice with APAP-induced liver injury were still susceptible to infections despite the dual cellular input of circulating monocytes and proliferation of remaining Kupffer cells in the damaged liver. Therapy with bone marrow-derived macrophages (BMDM) was shown to be effective in occupying the niche devoid of Kupffer cells following APAP-induced ALI. The rapid BMDM migration to the liver and their positioning within necrotic areas enhanced the healing of the tissue and restored the liver firewall function after BMDM therapy. Therefore, we showed that disruption in the Kupffer cell niche and its impaired function during acute liver injury are key factors for the susceptibility to systemic bacterial infections. In addition, modulation of the liver macrophage niche was shown to be a promising therapeutic strategy for liver injuries that reduce the Kupffer cell number and compromise the organ function.


Asunto(s)
Acetaminofén , Macrófagos del Hígado , Acetaminofén/efectos adversos , Humanos , Macrófagos del Hígado/metabolismo , Hígado , Macrófagos , Monocitos , Necrosis/metabolismo
11.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35682923

RESUMEN

Klebsiella pneumoniae is an important pathogen associated with hospital-acquired pneumonia (HAP). Bacterial pneumonia is characterized by a harmful inflammatory response with a massive influx of neutrophils, production of cytokines and chemokines, and consequent tissue damage and dysfunction. Targeted therapies to block neutrophil migration to avoid tissue damage while keeping the antimicrobial properties of tissue remains a challenge in the field. Here we tested the effect of the anti-inflammatory properties of the chemokine fragment CXCL9(74-103) in pneumonia induced by Klebsiella pneumoniae in mice. Mice were infected by intratracheal injection of Klebsiella pneumoniae and 6 h after infection were treated systemically with CXCL9(74-103). The recruitment of leukocytes, levels of cytokines and chemokines, colony-forming units (CFU), and lung function were evaluated. The treatment with CXCL9(74-103) decreased neutrophil migration to the airways and the production of the cytokine interleukin-1ß (IL-1ß) without affecting bacterial control. In addition, the therapeutic treatment improved lung function in infected mice. Our results indicated that the treatment with CXCL9(74-103) reduced inflammation and improved lung function in Klebsiella pneumoniae-induced pneumonia.


Asunto(s)
Infecciones por Klebsiella , Neumonía Bacteriana , Animales , Quimiocina CXCL2 , Quimiocinas , Citocinas , Inflamación/tratamiento farmacológico , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/fisiología , Pulmón/microbiología , Ratones , Neutrófilos/microbiología , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología
12.
Br J Pharmacol ; 179(12): 3061-3077, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34978069

RESUMEN

BACKGROUND AND PURPOSE: Bradykinin (BK-(1-9)) is an endogenous nonapeptide involved in multiple physiological and pathological processes. Peptide fragments of bradykinin are believed to be biologically inactive. We have now tested the two major peptide fragments of bradykinin in human and animals. EXPERIMENTAL APPROACH: BK peptides were quantified by MS in male rats. NO release was quantified from human, mouse and rat cells loaded with DAF-FM. Rat aortic rings were used to measure vascular reactivity. Changes in BP and HR were measured in conscious male rats. To evaluate pro-inflammatory effects both vascular permeability and nociception were measured in adult mice. KEY RESULTS: BK-(1-7) and BK-(1-5) are produced in vivo from BK-(1-9). Both peptides induced NO production in all cell types tested. However, unlike BK-(1-9), NO production elicited by BK-(1-7) or BK-(1-5) was not inhibited by B1 or B2 receptor antagonists. BK-(1-7) and BK-(1-5) induced concentration-dependent vasorelaxation of aortic rings, without involvement of B1 or B2 receptors. Intravenous or intra-arterial administration of BK-(1-7) or BK-(1-5) induced similar hypotensive response in vivo. Nociceptive responses of BK-(1-7) and BK-(1-5) were reduced compared to BK-(1-9), and no increase in vascular permeability was observed for BK-(1-9) fragments. CONCLUSIONS AND IMPLICATIONS: BK-(1-7) and BK-(1-5) are endogenous peptides present in plasma. BK-related peptide fragments show biological activity, not mediated by B1 or B2 receptors. These BK fragments could constitute new, active components of the kallikrein-kinin system.


Asunto(s)
Bradiquinina , Receptores de Bradiquinina , Animales , Bradiquinina/farmacología , Masculino , Ratones , Fragmentos de Péptidos , Ratas , Receptor de Bradiquinina B1 , Receptor de Bradiquinina B2 , Receptores de Bradiquinina/fisiología
13.
Mol Biol Rep ; 49(4): 3225-3236, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35066770

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) are a recently discovered neutrophil defense mechanism which modulates several inflammatory conditions contributing to metabolic profile alterations. Therefore, the present study aimed to evaluate the production of NETs in obese patients and mice, verifying the possible mechanisms associated with the release of NETs by the adipose tissue. METHODS AND RESULTS: The present study investigated NETs production in human adipose tissue and also showing the neutrophils using intravital microscopy in mouse epididymal adipose tissue. Blood and white adipose tissues were obtained from eutrophic and obese individuals and from mice. Lipid, glycemic and leukocyte profiles were evaluated, as well as the levels of NETs and its markers. Bioinformatics and proteomics analyses were performed and the identified key proteins were measured. The main findings showed that the inflammatory markers interleukin-8 (IL-8), heat shock protein 90 (HSP90) and the E1 heat shock protein family (HSPE1) can be modulated by the NETs levels in obesity. Obesity has also been associated with increased cholesterol, glucose intolerance, ionic calcium and NETs. We also observed an increase in catalase and a decreased superoxide dismutase activity. Bioinformatics and proteomics analyses revealed that IL-8, HSP90 and HSPE1 were associated with obesity, inflammation and NETs release. CONCLUSIONS: In conclusion, the present study shows an increase in NETs production during obesity associated with important inflammatory markers in adipose.


Asunto(s)
Trampas Extracelulares , Tejido Adiposo/metabolismo , Animales , Trampas Extracelulares/metabolismo , Humanos , Inflamación/metabolismo , Ratones , Neutrófilos/metabolismo , Obesidad/metabolismo
14.
J Virol ; 95(22): e0127621, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34495692

RESUMEN

The emergence of life-threatening zoonotic diseases caused by betacoronaviruses, including the ongoing coronavirus disease 19 (COVID-19) pandemic, has highlighted the need for developing preclinical models mirroring respiratory and systemic pathophysiological manifestations seen in infected humans. Here, we showed that C57BL/6J wild-type mice intranasally inoculated with the murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3) develop a robust inflammatory response leading to acute lung injuries, including alveolar edema, hemorrhage, and fibrin thrombi. Although such histopathological changes seemed to resolve as the infection advanced, they efficiently impaired respiratory function, as the infected mice displayed restricted lung distention and increased respiratory frequency and ventilation. Following respiratory manifestation, the MHV-3 infection became systemic, and a high virus burden could be detected in multiple organs along with morphological changes. The systemic manifestation of MHV-3 infection was also marked by a sharp drop in the number of circulating platelets and lymphocytes, besides the augmented concentration of the proinflammatory cytokines interleukin 1 beta (IL-1ß), IL-6, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor (TNF), thereby mirroring some clinical features observed in moderate and severe cases of COVID-19. Importantly, both respiratory and systemic changes triggered by MHV-3 infection were greatly prevented by blocking TNF signaling, either via genetic or pharmacologic approaches. In line with this, TNF blockage also diminished the infection-mediated release of proinflammatory cytokines and virus replication of human epithelial lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, results show that MHV-3 respiratory infection leads to a large range of clinical manifestations in mice and may constitute an attractive, lower-cost, biosafety level 2 (BSL2) in vivo platform for evaluating the respiratory and multiorgan involvement of betacoronavirus infections. IMPORTANCE Mouse models have long been used as valuable in vivo platforms to investigate the pathogenesis of viral infections and effective countermeasures. The natural resistance of mice to the novel betacoronavirus SARS-CoV-2, the causative agent of COVID-19, has launched a race toward the characterization of SARS-CoV-2 infection in other animals (e.g., hamsters, cats, ferrets, bats, and monkeys), as well as adaptation of the mouse model, by modifying either the host or the virus. In the present study, we utilized a natural pathogen of mice, MHV, as a prototype to model betacoronavirus-induced acute lung injure and multiorgan involvement under biosafety level 2 conditions. We showed that C57BL/6J mice intranasally inoculated with MHV-3 develops severe disease, which includes acute lung damage and respiratory distress that precede systemic inflammation and death. Accordingly, the proposed animal model may provide a useful tool for studies regarding betacoronavirus respiratory infection and related diseases.


Asunto(s)
Infecciones por Coronavirus/patología , Modelos Animales de Enfermedad , Pulmón/patología , Virus de la Hepatitis Murina/patogenicidad , Animales , Línea Celular , Contención de Riesgos Biológicos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Citocinas/metabolismo , Humanos , Inflamación , Hígado/patología , Hígado/virología , Pulmón/virología , Ratones , Virus de la Hepatitis Murina/efectos de los fármacos , Virus de la Hepatitis Murina/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Replicación Viral/efectos de los fármacos
15.
Front Immunol ; 12: 598943, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211455

RESUMEN

Neutrophils play an important role in the outcome of leishmaniasis, contributing either to exacerbating or controlling the progression of infection, a dual effect whose underlying mechanisms are not clear. We recently reported that CD4+ and CD8+ T cells, and dendritic cells of Leishmania amazonensis-infected mice present high expression of PD-1 and PD-L1, respectively. Given that the PD-1/PD-L1 interaction may promote cellular dysfunction, and that neutrophils could interact with T cells during infection, we investigated here the levels of PD-L1 in neutrophils exposed to Leishmania parasites. We found that both, promastigotes and amastigotes of L. amazonensis induced the expression of PD-L1 in the human and murine neutrophils that internalized these parasites in vitro. PD-L1-expressing neutrophils were also observed in the ear lesions and the draining lymph nodes of L. amazonensis-infected mice, assessed through cell cytometry and intravital microscopy. Moreover, expression of PD-L1 progressively increased in neutrophils from ear lesions as the disease evolved to the chronic phase. Co-culture of infected neutrophils with in vitro activated CD8+ T cells inhibits IFN-γ production by a mechanism dependent on PD-1 and PD-L1. Importantly, we demonstrated that in vitro infection of human neutrophils by L braziliensis induced PD-L1+ expression and also PD-L1+ neutrophils were detected in the lesions of patients with cutaneous leishmaniasis. Taken together, these findings suggest that the Leishmania parasite increases the expression of PD-L1 in neutrophils with suppressor capacity, which could favor the parasite survival through impairing the immune response.


Asunto(s)
Antígeno B7-H1/metabolismo , Leishmania braziliensis/fisiología , Leishmaniasis/inmunología , Neutrófilos/inmunología , Linfocitos T/inmunología , Animales , Antígeno B7-H1/genética , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Terapia de Inmunosupresión , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/metabolismo
16.
Front Cell Infect Microbiol ; 11: 788482, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071040

RESUMEN

Trypanosoma cruzi invades non-professional phagocytic cells by subverting their membrane repair process, which is dependent on membrane injury and cell signaling, intracellular calcium increase, and lysosome recruitment. Cells lacking lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2) are less permissive to parasite invasion but more prone to parasite intracellular multiplication. Several passages through a different intracellular environment can significantly change T. cruzi's gene expression profile. Here, we evaluated whether one single passage through LAMP-deficient (KO) or wild-type (WT) fibroblasts, thus different intracellular environments, could influence T. cruzi Y strain trypomastigotes' ability to invade L6 myoblasts and WT fibroblasts host cells. Parasites released from LAMP2 KO cells (TcY-L2-/-) showed higher invasion, calcium signaling, and membrane injury rates, for the assays in L6 myoblasts, when compared to those released from WT (TcY-WT) or LAMP1/2 KO cells (TcY-L1/2-/-). On the other hand, TcY-L1/2-/- showed higher invasion, calcium signaling, and cell membrane injury rates, for the assays in WT fibroblasts, compared to TcY-WT and TcY-L1/2-/-. Albeit TcY-WT presented an intermediary invasion and calcium signaling rates, compared to the others, in WT fibroblasts, they induced lower levels of injury, which reinforces that signals mediated by surface membrane protein interactions also have a significant contribution to trigger host cell calcium signals. These results clearly show that parasites released from WT or LAMP KO cells are distinct from each other. Additionally, these parasites' ability to invade the cell may be distinct depending on which cell type they interact with. Since these alterations most likely would reflect differences among parasite surface molecules, we also evaluated their proteome. We identified few protein complexes, membrane, and secreted proteins regulated in our dataset. Among those are some members of MASP, mucins, trans-sialidases, and gp63 proteins family, which are known to play an important role during parasite infection and could correlate to TcY-WT, TcY-L1/2-/-, and TcY-L2-/- biological behavior.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Células Cultivadas , Enfermedad de Chagas/patología , Fibroblastos/parasitología , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/genética , Lisosomas , Proteínas de la Membrana , Ratones , Mioblastos/parasitología
17.
Nutrition ; 81: 110938, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32739658

RESUMEN

OBJECTIVES: The aim of this study was to investigate putative different outcomes on the development of non-alcoholic fatty liver disease in mice using fat options regularly used in human nutrition. METHODS: Male C57BL/6 mice were fed a control diet, and four different high-fat diets (HFD: 40% calories from fat; Research Diet, Inc., New Brunswick, New Jersey, USA) for 16 and 30 wk. HFDs had different common fat sources, including trans-fat, non-trans-fat palm oil (Primex-Z), palm oil alone, and corn oil alone. Mice were sacrificed and samples were collected for analysis. RESULTS: Using an unprecedented combination of in vivo imaging with immunometabolic phenotyping, we revealed that a HFD induced a major increase in hepatic lipid droplet deposition compared with control mice, being significantly higher in Primex-Z-fed mice. All HFD mice had similar or less weight gain as control mice; however, Primex-Z ingestion led to a higher increase in adiposity index (~90% increase) compared with other fat sources. Gene expression of isolated liver immune cells revealed large changes in expression of several inflammatory pathways, which were also more elevated in Primex-Z-fed mice, including Tnf (~20-fold), Il1b (~60-fold), and Tgfb (2.5-fold). Immunophenotyping and in vivo analysis showed that the frequency of hepatic immune cells was also disturbed during different HFD contents, rendering not only Kupffer cell depletion, but also reduced bacterial arresting ability. CONCLUSION: Different fat dietary sources imprint different immune and metabolic effects in the liver during consumption of an HFD. The present data highlighted that Primex-Z-a novel non-trans-fat-is not only able to damage hepatocytes, but also to impair liver ability to clear blood-borne infections.


Asunto(s)
Infecciones Bacterianas , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología
18.
Sci Rep ; 10(1): 19257, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159113

RESUMEN

Photobiomodulation is being widely applied for improving dermal or mucosal wound healing. However, the underlying cellular and molecular processes that directly contribute to its effects remain poorly understood. Pericytes are relevant cells involved in the wound microenvironment and could be one of the main targets of photobiomodulation due to their plasticity and perivascular localization. Herein, we investigate tissue repair under the photobiomodulation stimulus using a pericyte labeled (or reporter) transgenic mice. Using a model of two contralateral back wounds, one the control and the other photoactivated daily (660 nm, 20 mW, 0.71 W/cm2, 5 J/cm2, 7 s, 0.14 J), we showed an overall influx of immune and undifferentiated cells and higher mobilization of a potent pericyte subpopulation (Type-2 pericytes) in the photoactivated wounds in comparison to the controls. Doppler analysis showed a significant increase in the blood flow in the photoactivated wounds, while marked vascular supply was observed histologically. Histochemical analysis has indicated more advanced stages of tissue repair after photoactivation. These data suggest that photobiomodulation significantly accelerates tissue repair through its vascular effects with direct recruitment of pericytes to the injury site.


Asunto(s)
Terapia por Luz de Baja Intensidad , Pericitos/metabolismo , Piel/lesiones , Piel/metabolismo , Cicatrización de Heridas , Animales , Ratones , Ratones Transgénicos , Pericitos/patología , Piel/patología
19.
PLoS One ; 15(9): e0238823, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32970684

RESUMEN

Mucoadhesive polymeric nanocapsules have attracted interest of researchers from different fields from natural sciences because of their ability to interact with the mucosa and increase drug permeation. Anesthesia by immersion causes absorption through the skin and gills of fish, so it is important to evaluate the exposure of these organs to drug nanosystems. Benzocaine (BENZ) is one of the most popular anesthetic agents used in fish anesthesia, but it has drawbacks because of its low bioavailability, resulting in weak absorption after immersion. Here we describe method developed for preparing and characterizing chitosan-coated PLGA mucoadhesive nanoparticles containing BENZ (NPMAs) for zebrafish immersion anesthesia. We determined the lowest effective concentration, characterized the interaction of the mucoadhesive system with fish, measured the anesthetic efficacy, and evaluated possible toxic effects in embryos and adults exposed to the nanoformulations. This study opens perspectives for using nanoformulations prepared with BENZ in aquaculture, allowing reduction of dosage as well as promoting more effective anesthesia and improved interaction with the mucoadhesive system of fish.


Asunto(s)
Anestesia/veterinaria , Benzocaína/administración & dosificación , Nanocápsulas/administración & dosificación , Pez Cebra , Animales , Acuicultura , Quitosano/administración & dosificación , Quitosano/toxicidad , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Branquias/efectos de los fármacos , Nanocápsulas/toxicidad , Piel/efectos de los fármacos
20.
FASEB J ; 34(9): 11498-11510, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32741032

RESUMEN

Staphylococcus aureus is the main cause of septic arthritis in humans, a disease associated with high morbidity and mortality. Inflammation triggered in response to infection is fundamental to control bacterial growth but may cause permanent tissue damage. Here, we evaluated the role of Lipoxin A4 (LXA4 ) in S aureus-induced arthritis in mice. Septic arthritis was induced by S aureus injection into tibiofemoral joints. At different time points, we evaluated cell recruitment and bacterial load in the joint, the production of pro-inflammatory molecules, and LXA4 in inflamed tissue and analyzed joint damage and dysfunction. LXA4 was investigated using genetically modified mice or by pharmacological blockade of its synthesis and receptor. CD11c+ cells were evaluated in lymph nodes by confocal microscopy and flow cytometry and dendritic cell chemotaxis using the Boyden chamber. Absence or pharmacological blockade of 5-lipoxygenase (5-LO) reduced joint inflammation and dysfunction and was associated with better control of infection at 4 to 7 days after the infection. There was an increase in LXA4 in joints of S aureus-infected mice and administration of LXA4 reversed the phenotype in 5-LO-/- mice. Blockade or absence of the LXA4 receptor FPR2 has a phenotype similar to 5-LO-/- mice. Mechanistically, LXA4 appeared to control migration and function of dendritic cells, cells shown to be crucial for adequate protective responses in the model. Thus, after the first days of infection when symptoms become evident therapies that inhibit LXA4 synthesis or action could be useful for treatment of S aureus-induced arthritis.


Asunto(s)
Artritis Infecciosa/complicaciones , Articulaciones/efectos de los fármacos , Lipoxinas/farmacología , Infecciones Estafilocócicas/complicaciones , Staphylococcus aureus/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Artritis Infecciosa/microbiología , Células Cultivadas , Humanos , Articulaciones/microbiología , Articulaciones/patología , Lipoxinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...