Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 656
Filtrar
1.
New Phytol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267260

RESUMEN

Monolignol serves as the building blocks to constitute lignin, the second abundant polymer on Earth. Despite two decades of diligent efforts, complete identification of all metabolites in the currently proposed monolignol biosynthesis pathway has proven elusive. This limitation also hampers their potential application. One of the primary obstacles is the challenge of assembling a collection of all molecules, because many are commercially unavailable or prohibitively costly. In this study, we established systematic pipelines to synthesize all 24 molecules through the conversions between functional groups on a core structure followed by the application to other core structures. We successfully identified all of them in Populus trichocarpa and Eucalyptus grandis, two representative species respectively from malpighiales and myrtales in angiosperms. Knowledge about monolignol metabolite chemosynthesis and identification will form the foundation for future studies.

2.
Int J Biol Macromol ; : 135898, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343254

RESUMEN

Limited research exists on how the structure of quaternary ammonium salt (QAS) affects the electrostatic attraction and hydroxyl reactivity of cationic cotton, which strongly affects reactive dye adsorption, diffusion, and fixation. Thus, in our work, the effects of QAS structure on the electrostatic attraction, hydroxyl reactivity, and dyeing properties were investigated. The intensity at 402.5 eV (-N+(CH3)3) in the XPS rose from 34 % to 70 % as the QAS alkyl chain length increased from 4 to 18 carbon atoms, signifying an enhancement of the positive charge and electrostatic attraction between reactive dye and QAS modified cotton. However, molecular dynamic (MD) simulations of the QAS-modified cotton with octadecyl chains revealed that the reactive dye demonstrated slower molecular mobility compared to the untreated cotton. This is not conducive to the diffusion and fixation of reactive dyes. The QAS-modified cotton with hexyl chains not only alters the activity of hydroxyl at the 6th but also generates additional hydroxyl at the ß-position that contributes to enhancing the improvement of fixation through Gaussian simulations. Therefore, cationic cotton treated with 60 g/L of (3-chloro-2-hydroxypropyl)-dimethyl-octadecylazanium chloride (CT-8) exhibits superior dye uptake levels (91.84 %), K/S values (13.10), and dye fixation percent (88.38 %).

3.
Front Mol Biosci ; 11: 1409060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247207

RESUMEN

Objective: This study aimed to investigate the value of a CT-enhanced scanning radiomics nomogram in distinguishing between early hepatic abscess (EHA) and intrahepatic cholangiocarcinoma (ICC) and to validate its diagnostic efficacy. Materials and Methods: Clinical and imaging data on 112 patients diagnosed with EHA and ICC who underwent double-phase CT-enhanced scanning at our hospital were collected. The contours of the lesions were delineated layer by layer across the three phases of CT scanning and enhancement using 3D Slicer software to define the region of interest (ROI). Subsequently, the contours were merged into 3D models, and radiomics features were extracted using the Radiomics plug-in. The data were randomly divided into training (n = 78) and validation (n = 34) cohorts at a 7:3 ratio, using the R programming language. Standardization was performed using the Z-score method, and LASSO regression was used to select the best λ-value for screening variables, which were then used to establish prediction models. The rad-score was calculated using the best radiomics model, and a joint model was constructed based on the rad-score and clinical scores. A nomogram was developed based on the joint model. The diagnostic efficacy of the models for distinguishing ICC and EHA was assessed using receiver operating characteristic (ROC) curve and area under the curve (AUC) analyses. Calibration curves were used to evaluate the reliability and accuracy of the nomograms, while decision curves and clinical impact curves were utilized to assess their clinical value. Results: Compared with the ICC group, significant differences were observed in clinical data and imaging characteristics in the EHA group, including age, centripetal enhancement, hepatic pericardial depression sign, arterial perfusion abnormality, arterial CT value, and arteriovenous enhancement (p < 0.05). Logistic regression analysis identified centripetal enhancement, hepatic pericardial depression sign, arterial perfusion abnormality, arterial CT value, and arteriovenous enhancement as independent influencing factors. Three, five, and four radiomics features were retained in the scanning, arterial, and venous phases, respectively. Single-phase models were constructed, with the radiomics model from the arterial phase demonstrating the best diagnostic efficacy. The rad-score was calculated using the arterial-phase radiomics model, and nomograms were drawn in conjunction with the clinical model. The nomogram based on the combined model exhibited the highest differential diagnostic efficacy between EHA and ICC (training cohort: AUC of 0.972; validation cohort: AUC of 0.868). The calibration curves indicated good agreement between the predicted and pathological results, while decision curves and clinical impact curves demonstrated higher clinical utility of the nomograms. Conclusion: The CT-enhanced scanning radiomics nomogram demonstrates high clinical value in distinguishing between EHA and ICC, thereby enhancing the accuracy of preoperative diagnosis.

4.
Orthop Surg ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223445

RESUMEN

Total knee arthroplasty (TKA) is a well-established treatment for end-stage knee osteoarthritis. However, in patients with concomitant extra-articular deformities, conventional TKA techniques may lead to unsatisfactory outcomes and higher complication rates. This review summarizes the application of navigated TKA for treating knee osteoarthritis with extra-articular deformities. The principles and potential benefits of computer navigation systems, including improved component alignment, soft tissue balancing, and restoration of mechanical axis, are discussed. Research studies demonstrate that navigated TKA can effectively correct deformities, relieve pain, and improve postoperative joint function and quality of life compared with conventional methods. The advantages of navigated TKA in terms of surgical precision, lower complication rates, and superior functional recovery are highlighted. Despite challenges like the learning curve and costs, navigated TKA is an increasingly indispensable tool for achieving satisfactory outcomes in TKA for knee osteoarthritis patients with extra-articular deformities.

5.
Cell Death Dis ; 15(9): 683, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294131

RESUMEN

Cardiomyocyte hypertrophy is a major outcome of pathological cardiac hypertrophy. The m6A demethylase ALKBH5 is reported to be associated with cardiovascular diseases, whereas the functional role of ALKBH5 in cardiomyocyte hypertrophy remains confused. We engineered Alkbh5 siRNA (siAlkbh5) and Alkbh5 overexpressing plasmid (Alkbh5 OE) to transfect cardiomyocytes. Subsequently, RNA immunoprecipitation (RIP)-qPCR, MeRIP-qPCR analysis and the dual-luciferase reporter assays were applied to elucidate the regulatory mechanism of ALKBH5 on cardiomyocyte hypertrophy. Our study identified ALKBH5 as a new contributor of cardiomyocyte hypertrophy. ALKBH5 showed upregulation in both phenylephrine (PE)-induced cardiomyocyte hypertrophic responses in vitro and transverse aortic constriction (TAC)/high fat diet (HFD)-induced pathological cardiac hypertrophy in vivo. Knockdown or overexpression of ALKBH5 regulated the occurrence of hypertrophic responses, including the increased cardiomyocyte surface areas and elevation of the hypertrophic marker levels, such as brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP). Mechanically, we indicated that ALKBH5 activated JAK2/STAT3 signaling pathway and mediated m6A demethylation on Stat3 mRNA, but not Jak2 mRNA, resulting in the phosphorylation and nuclear translocation of STAT3, which enhances the transcription of hypertrophic genes (e.g., Nppa) and ultimately leads to the emergence of cardiomyocytes hypertrophic growth. Our work highlights the functional role of ALKBH5 in regulating the onset of cardiomyocyte hypertrophy and provides a potential target for hypertrophic heart diseases prevention and treatment. ALKBH5 activated JAK2/STAT3 signaling pathway and mediated m6A demethylation on Stat3 mRNA, but not Jak2 mRNA, resulting in the phosphorylation and nuclear translocation of STAT3, which enhances the transcription of hypertrophic genes (e.g., Nppa) and ultimately leads to the emergence of cardiomyocytes hypertrophic growth.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Cardiomegalia , Janus Quinasa 2 , Miocitos Cardíacos , Factor de Transcripción STAT3 , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Janus Quinasa 2/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Ratones Endogámicos C57BL , Ratones , Masculino , Ratas , Fenilefrina/farmacología , Péptido Natriurético Encefálico/metabolismo , Ratas Sprague-Dawley , Adenosina/metabolismo , Adenosina/análogos & derivados , Humanos
6.
Aging Cell ; : e14320, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158018

RESUMEN

Degenerative spinal stenosis is a chronic disease that affects the spinal ligaments and associated bones, resulting in back pain and disorders of the limbs among the elderly population. There are few preventive strategies for such ligament degeneration. We here aimed to establish a comprehensive transcriptomic atlas of ligament tissues to identify high-priority targets for pharmaceutical treatment of ligament degeneration. Here, single-cell RNA sequencing was performed on six degenerative ligaments and three traumatic ligaments to understand tissue heterogeneity. After stringent quality control, high-quality data were obtained from 32,014 cells. Distinct cell clusters comprising stromal and immune cells were identified in ligament tissues. Among them, we noted that collagen degradation associated with CTHRC1+ fibroblast-like cells and calcification linked to CRTAC1+ chondrocyte-like cells were key features of ligament degeneration. SCENIC analysis and further experiments identified ATF3 as a key transcription factor regulating the pathogenesis of CRTAC1+ chondrocyte-like cells. Typically, immune cells infiltrate localized organs, causing tissue damage. In our study, myeloid cells were found to be inflammatory-activated, and SPP1+ macrophages were notably enriched in degenerative ligaments. Further exploration via CellChat analysis demonstrated a robust interaction between SPP1+ macrophages and CRTAC1+ chondrocyte-like cells. Activated by SPP1, ATF3 propels the CRTAC1/MGP/CLU axis, fostering ligament calcification. Our unique resource provides novel insights into possible mechanisms underlying ligament degeneration, the target cell types, and molecules that are expected to mitigate degenerative spinal ligament. We also highlight the role of immune regulation in ligament degeneration and calcification, enhancing our understanding of this disease.

7.
ACS Nano ; 18(32): 21156-21170, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39088743

RESUMEN

How to address the resistance of cisplatin (CDDP) has always been a clinical challenge. The resistance mechanism of platinum-based drugs is very complex, including nuclear DNA damage repair, apoptosis escape, and tumor metabolism reprogramming. Tumor cells can switch between mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis and develop resistance to chemotherapy drugs through metabolic variability. In addition, due to the lack of histone protection and a relatively weak damage repair ability, mitochondrial DNA (mtDNA) is more susceptible to damage, which in turn affects mitochondrial OXPHOS and can become a potential target for platinum-based drugs. Therefore, mitochondria, as targets of anticancer drugs, have become a hot topic in tumor resistance research. This study constructed a self-assembled nanotargeted drug delivery system LND-SS-Pt-TPP/HA-CD. ß-Cyclodextrin-grafted hydronic acid (HA-CD)-encapsulated prodrug nanoparticles can target CD44 on the tumor surface and further deliver the prodrug to intracellular mitochondria through a triphenylphosphine group (TPP+). Disulfide bonds can be selectively degraded by glutathione (GSH) in mitochondria, releasing lonidamine (LND) and the cisplatin prodrug (Pt(IV)). Under the action of GSH and ascorbic acid, Pt(IV) is further reduced to cisplatin (Pt(II)). Cisplatin can cause mtDNA damage, induce mitochondrial dysfunction and mitophagy, and then affect mitochondrial OXPHOS. Meanwhile, LND can reduce the hexokinase II (HK II) level, induce destruction of mitochondria, and block energy supply by glycolysis inhibition. Ultimately, this self-assembled nano targeted delivery system can synergistically kill cisplatin-resistant lung cancer cells, which supplies an overcome cisplatin resistance choice via the disrupt mitochondria therapy.


Asunto(s)
Antineoplásicos , Cisplatino , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Mitocondrias , Profármacos , Cisplatino/farmacología , Cisplatino/química , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Profármacos/farmacología , Profármacos/química , Nanopartículas/química , Animales , Ratones , Sistemas de Liberación de Medicamentos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Reprogramación Metabólica
8.
Front Genet ; 15: 1440062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119575

RESUMEN

Background: Previous studies have explored the role of plasma proteins on osteonecrosis. This Mendelian randomization (MR) study further assessed plasma proteins on osteonecrosis whether a causal relationship exists and provides some evidence of causality. Methods: Summary-level data of 4,907 circulating protein levels were extracted from a large-scale protein quantitative trait loci study including 35,559 individuals by the deCODE Genetics Consortium. The outcome data for osteonecrosis were sourced from the FinnGen study, comprising 1,543 cases and 391,037 controls. MR analysis was conducted to estimate the associations between protein and osteonecrosis risk. Additionally, Phenome-wide MR analysis, and candidate drug prediction were employed to identify potential causal circulating proteins and novel drug targets. Results: We totally assessed the effect of 1,676 plasma proteins on osteonecrosis risk, of which 71 plasma proteins had a suggestive association with outcome risk (P < 0.05). Notably, Heme-binding protein 1 (HEBP1) was significant positively associated with osteonecrosis risk with convening evidence (OR, 1.40, 95% CI, 1.19 to 1.65, P = 3.96 × 10-5, P FDR = 0.044). This association was further confirmed in other MR analysis methods and did not detect heterogeneity and pleiotropy (all P > 0.05). To comprehensively explore the health effect of HEBP1, the phenome-wide MR analysis found it was associated with 136 phenotypes excluding osteonecrosis (P < 0.05). However, no significant association was observed after the false discovery rate adjustment. Conclusion: This comprehensive MR study identifies 71 plasma proteins associated with osteonecrosis, with HEBP1, ITIH1, SMOC1, and CREG1 showing potential as biomarkers of osteonecrosis. Nonetheless, further studies are needed to validate this candidate plasma protein.

9.
Heliyon ; 10(14): e34268, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100458

RESUMEN

Joints and fractures lead to different failure mechanisms in rock masses under different environments. The mechanical properties and failure mechanisms of rocks with fissures are key problems in rock mass engineering. Parallel double-fracture quasi-sandstone specimens with different dip angles were prepared and subjected to triaxial compression tests after a single freeze-thaw cycle. Pore development, crack propagation, damage evolution, and failure characteristics were analysed. Combined with the strength distribution theory of microelements and the static elastic modulus theory, a damage constitutive model of double-fracture quasi-sandstone under freeze-thaw cycles and loads was established. This study explored the pore development, fracture propagation, damage evolution, and failure characteristics of fractured sandstone after thawing. The results showed that the compression wave velocity of the thawed specimens decreased, the nuclear magnetic resonance (NMR) T2 curve shifted to the right, and the frost heave force promoted the development of the internal porosity in the specimens. With an increase in the crack dip angle, peak stress, expansion stress, cohesion and internal friction angle, the specimen showed a 'U' shaped change trend, compression cracks, and rock bridge penetration rate after failure decreased, and mixed failure of tension and shear gradually changed into shear failure. When the dip angles were 30° and 60°, the double fractured quasi-sandstone had larger total damage and more obvious brittle failure characteristics.

10.
J Am Chem Soc ; 146(32): 22387-22395, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39088737

RESUMEN

Preventing ion migration in perovskite photovoltaics is key to achieving stable and efficient devices. The activation energy for ion migration is affected by the chemical environment surrounding the ions. Thus, the migration of organic cations in lead halide perovskites can be mitigated by engineering their local interactions, for example through hydrogen bonding. Ion migration also leads to ionic losses via interfacial reactions. Undesirable reactivities of the organic cations can be eliminated by introducing protecting groups. In this work, we report bis(2-oxo-3-oxazolidinyl) phosphinic chloride (BOP-Cl) as a perovskite ink additive with the following benefits: (1) The phosphoryl and two oxo groups form six-membered intermolecular hydrogen-bonded rings with the formamidinium cation (FA), mitigating ion migrations. (2) The hydrogen bonding reduces the electrophilicity of the ammonium protons by donating electron density, therefore reducing its reactivity with the surface oxygen on the metal oxide. Furthermore, the molecule can react to form a protecting group on the nucleophilic oxygen at the tin oxide transport layer surface through the elimination of chlorine. As a result, we achieve perovskite solar cells with an efficiency of 25.0% and improved MPP stability T93 = 1200 h at 40-45 °C compared to a control device (T86 = 550 h). In addition, we show a negative correlation between the strength of hydrogen bonding of different phosphine oxide derivatives to the organic cations and the degree of metastable behavior (e.g., initial burn-in) of the device.

11.
Heliyon ; 10(14): e34547, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130408

RESUMEN

Objectives: Research shows a close association between aberrant immune reactions in osteonecrotic tissues and immune cell infiltration. However, due to limitations in sample size and dataset comprehensiveness, the causal relationship between them is not fully established. This study aims to determine whether there is a causal relationship using a larger and more diverse dataset. Methods: We conducted a comprehensive Mendelian Randomization (MR) analysis to investigate the causal relationship between immune cell characteristics and osteonecrosis. Utilizing publicly available genetic data, we explored the causal relationships between 731 immune cell features and 604 cases from the FinnGen Finnish database, as well as 257 cases from the UK Biobank database with osteonecrosis data. The inverse-variance weighted (IVW) method was used for the primary analysis, and we employed sensitivity analyses to assess the robustness of the main results. In addition, considering data from the two databases used in this study, a meta-analysis was conducted on the significant immune cells associated with osteonecrosis (FDR <0.05). Results: our findings suggested that specific immune cell signatures, such as CD20- % lymphocytes, CD62L-monocytes, and CD33br HLA DR+ CD14-cells were associated with increased odds of osteonecrosis. In contrast, EM CD4+ activated cells and DP (CD4+ CD8+) T cells were associated with decreased odds. Notably, osteonecrosis was associated with a potential decrease in CD45 on immature MDSC cell content. Conclusion: From a genetic perspective, we demonstrated a close association between immune cells and osteonecrosis. These findings significantly enhance our understanding of the interplay between immune cell infiltration and the risk of osteonecrosis, contributing to the potential design of therapeutic strategies from an immunological standpoint.

12.
J Plast Surg Hand Surg ; 59: 95-101, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206757

RESUMEN

PURPOSE: Exploring the therapeutic effects of Ni-Ti shape memory alloy four-corner arthrodesis concentrator (NT-FCAC) in treating scaphoid nonunion advanced collapse (SNAC) and providing a decade-long follow-up report. MATERIALS AND METHODS: Twenty-six patients with SNAC underwent scaphoidectomy, along with four-corner arthrodesis fusion involving the capitate, lunate, triquetrum, and hamate, using NT-MFCAC. Grip strength was measured using a Jamar dynamometer, while wrist joint mobility was assessed using a goniometer. Preoperative and postoperative assessments were conducted using the Quick Disabilities of the Arm, Shoulder, and Hand (Quick DASH) questionnaire to monitor limb functionality restoration. Pain levels at the wrist joint were evaluated using the visual analog scale (VAS). Postoperative wrist bone fusion status was assessed through anteroposterior and lateral radiographs of the wrist joint. RESULTS: After a 3-month postoperative period, all 26 patients exhibited osseous union at the wrist joint. Over a follow-up spanning 10-15 years, no severe postoperative complications were observed in any patient. Grip strength in the affected side of all patients recovered to 81.96% compared to the healthy side, while wrist joint mobility in the affected side reached over 60% of the healthy side's functionality. VAS scores decreased significantly from 5.85 ± 0.73 preoperatively to 0.19 ± 0.40 at the final follow-up; Quick DASH scores reduced from 69.88 ± 5.12 preoperatively to 6.30 ± 1.25 at final follow-up. Statistically significant differences were noted in VAS and Quick DASH scores for all patients (p < 0.05). However, beyond 60 months postoperatively, subsequent follow-ups did not yield statistically significant differences in VAS and Quick DASH scores for all patients (p > 0.05). CONCLUSIONS: Utilizing NT-FCAC for SNAC treated with four-corner arthrodesis fusion results in a high rate of wrist bone fusion, preserving a significant portion of wrist joint function and exhibiting favorable long-term outcomes. This approach is suitable for treating patients with SNAC requiring four-corner arthrodesis fusion.


Asunto(s)
Artrodesis , Fracturas no Consolidadas , Fuerza de la Mano , Níquel , Hueso Escafoides , Titanio , Humanos , Artrodesis/instrumentación , Masculino , Femenino , Hueso Escafoides/cirugía , Estudios de Seguimiento , Adulto , Persona de Mediana Edad , Fracturas no Consolidadas/cirugía , Rango del Movimiento Articular , Articulación de la Muñeca/cirugía , Adulto Joven , Resultado del Tratamiento , Dimensión del Dolor
13.
Artículo en Chino | MEDLINE | ID: mdl-39193750

RESUMEN

Chronic rhinosinusitis with nasal polyps is a common chronic inflammatory disease with significant tissue remodeling, but the mechanism of remodeling remains unclear. Studies have shown that Type(T) 2 inflammatory network plays a crucial role in tissue remodeling and nasal polyp formation. Clinical trials have been carried out for several biological targets, and a number of potential therapeutic targets have received increasing attention. This paper will summarize the research progress of T2 inflammatory response involved in nasal polyp tissue remodeling to provide ideas for further exploring the mechanism of nasal polyp tissue remodeling.


Asunto(s)
Inflamación , Pólipos Nasales , Sinusitis , Pólipos Nasales/patología , Humanos , Células Th2/inmunología
14.
Adv Sci (Weinh) ; 11(34): e2400234, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38988056

RESUMEN

The dense mechanoreceptors in human fingertips enable texture discrimination. Recent advances in flexible electronics have created tactile sensors that effectively replicate slowly adapting (SA) and rapidly adapting (RA) mechanoreceptors. However, the influence of dermatoglyphic structures on tactile signal transmission, such as the effect of fingerprint ridge filtering on friction-induced vibration frequencies, remains unexplored. A novel multi-layer flexible sensor with an artificially synthesized skin surface capable of replicating arbitrary fingerprints is developed. This sensor simultaneously detects pressure (SA response) and vibration (RA response), enabling texture recognition. Fingerprint ridge patterns from notable historical figures - Rosa Parks, Richard Nixon, Martin Luther King Jr., and Ronald Reagan - are fabricated on the sensor surface. Vibration frequency responses to assorted fabric textures are measured and compared between fingerprint replicas. Results demonstrate that fingerprint topography substantially impacts skin-surface vibrational transmission. Specifically, Parks' fingerprint structure conveyed higher frequencies more clearly than those of Nixon, King, or Reagan. This work suggests individual fingerprint ridge morphological variation influences tactile perception and can confer adaptive advantages for fine texture discrimination. The flexible bioinspired sensor provides new insights into human vibrotactile processing by modeling fingerprint-filtered mechanical signals at the finger-object interface.


Asunto(s)
Dermatoglifia , Percepción del Tacto , Vibración , Humanos , Percepción del Tacto/fisiología , Dedos/fisiología , Dedos/anatomía & histología , Biometría/métodos , Mecanorreceptores/fisiología , Dispositivos Electrónicos Vestibles , Tacto/fisiología
15.
Nat Plants ; 10(8): 1201-1214, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38997433

RESUMEN

Rice is one of the most important staple food and model species in plant biology, yet its quantitative proteomes are largely uncharacterized. Here we quantify the relative protein levels of over 15,000 genes across major rice tissues using a tandem mass tag strategy followed by intensive fractionation and mass spectrometry. We identify tissue-specific and tissue-enriched proteins that are linked to the functional specificity of individual tissues. Proteogenomic comparison of rice and Arabidopsis reveals conserved proteome expression, which differs from mammals in that there is a strong separation of species rather than tissues. Notably, profiling of N6-methyladenosine (m6A) across the rice major tissues shows that m6A at untranslated regions is negatively correlated with protein abundance and contributes to the discordance between RNA and protein levels. We also demonstrate that our data are valuable for identifying novel genes required for regulating m6A methylation. Taken together, this study provides a paradigm for further research into rice proteogenome.


Asunto(s)
Adenosina , Oryza , Proteómica , Oryza/genética , Oryza/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteómica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteoma/metabolismo , Proteoma/genética , Espectrometría de Masas , Metilación , Arabidopsis/genética , Arabidopsis/metabolismo
16.
World J Gastrointest Oncol ; 16(6): 2476-2486, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38994164

RESUMEN

BACKGROUND: The objectives of this study were to assess the safety and efficacy of drug-eluting bead transarterial chemoembolization (DEB-TACE) as neoadjuvant therapy before liver transplantation (LT) for advanced-stage hepatocellular carcinoma (HCC) and to analyze the prognostic factors. AIM: To determine whether DEB-TACE before LT is superior to LT for advanced-stage HCC. METHODS: A total of 99 individuals diagnosed with advanced HCC were studied retrospectively. The participants were categorized into the following two groups based on whether they had received DEB-TACE before LT: DEB-TACE group (n = 45) and control group (n = 54). The participants were further divided into two subgroups based on the presence or absence of segmental portal vein tumor thrombus (PVTT). The DEB-TACE group consisted of two subgroups: Group A (n = 31) without PVTT and group B (n = 14) with PVTT. The control group also had two subgroups: Group C (n = 37) without PVTT and group D (n = 17) with PVTT. Data on patient demographics, disease characteristics, therapy response, and adverse events (AEs) were collected. The overall survival (OS) and recurrence-free survival (RFS) rates were assessed using Kaplan-Meier curves. Univariate and multivariate Cox regression analyses were conducted to determine the parameters that were independently related to OS and RFS. RESULTS: The DEB-TACE group exhibited an overall response rate of 86.6%. Following therapy, there was a significant decrease in the median alpha-fetoprotein (AFP) level (275.1 ng/mL vs 41.7 ng/mL, P < 0.001). The main AE was post-embolization syndrome. The 2-year rates of RFS and OS were significantly higher in the DEB-TACE group than in the control group (68.9% vs 38.9%, P = 0.003; 86.7% vs 63.0%, P = 0.008). Within the subgroups, group A had higher 2-year rates of RFS and OS compared to group C (71.0% vs 45.9%, P = 0.038; 83.8% vs 62.2%, P = 0.047). The 2-year RFS rate of group B was markedly superior to that of group D (64.3% vs 23.5%, P = 0.002). Results from multivariate analyses showed that pre-LT DEB-TACE [hazard ratio (HR) = 2.73, 95% confidence interval (CI): 1.44-5.14, P = 0.04], overall target tumor diameter ≤ 7 cm (HR = 1.98, 95%CI: 1.05-3.75, P = 0.035), and AFP level ≤ 400 ng/mL (HR = 2.34; 95%CI: 1.30-4.19, P = 0.009) were significant risk factors for RFS. Additionally, pre-LT DEB-TACE (HR = 3.15, 95%CI: 1.43-6.96, P = 0.004) was identified as a significant risk factor for OS. CONCLUSION: DEB-TACE is a safe and efficient therapy for advanced-stage HCC and also enhances patient survival after LT.

17.
Polymers (Basel) ; 16(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000741

RESUMEN

With improvements in living standards, the demand for antibacterial self-cleaning coatings has significantly increased. In this work, self-cleaning coatings with antibacterial properties were fabricated by spray-coating a composite of fluorinated acrylic resin and Ag/SiO2 nanoparticles with quaternary ammonium salts. The synergistic action of the quaternary ammonium salts and silver nanostructures caused the coating to show a dual antibacterial effect. The Ag/SiO2 nanoparticles roughened the coating's surface and, in combination with the fluorinated chains, provided the surface a superhydrophobic self-cleaning property with a contact angle of 156° and a sliding angle of less than 2°. Notably, the composite coating withstood 100 abrasion cycles without losing its superhydrophobicity and the contact angle is still exceeded 150° after 60 h of immersion solutions with different pH values, demonstrating outstanding wear resistance and acid/alkali stability. The incorporation of nanostructured antibacterial agents was effective in improving the roughness and antibacterial properties of the low-surface-energy resin, resulting in a self-cleaning antibacterial composite coating. This method may pave a new route for the design of functional coating materials with excellent overall performance.

18.
Arthrosc Tech ; 13(6): 102970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39036396

RESUMEN

Injuries of the posterior root of the medial meniscus can be accompanied by damage to the anterior cruciate ligament or often occur independently in cases of degenerative meniscal injury in older individuals. Anchor suture repair can achieve favorable biomechanical effects and clinical outcomes. However, anchor placement is technically challenging and requires a posterior medial approach, which increases the risk of iatrogenic injury. To address these issues, we have utilized the reverse anchor technique to repair the posterior root of the medial meniscus. This technique offers advantages such as reduced surgical time, simplified operation, and reduced risk of the "bungee effect" and iatrogenic injury.

19.
Adv Sci (Weinh) ; 11(30): e2307765, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38898730

RESUMEN

Multi-drug resistance (MDR) is a major cause of cancer therapy failure. Photodynamic therapy (PDT) is a promising modality that can circumvent MDR and synergize with chemotherapies, based on the generation of reactive oxygen species (ROS) by photosensitizers. However, overproduction of glutathione (GSH) by cancer cells scavenges ROS and restricts the efficacy of PDT. Additionally, side effects on normal tissues are unavoidable after PDT treatment. Here, to develop organic systems that deliver effective anticancer PDT and chemotherapy simultaneously with very little side effects, three GSH-sensitive photosensitizer-drug conjugates (CyR-SS-L) are designed and synthesized. CyR-SS-L localized in the mitochondria then is cleaved into CyR-SG and SG-L parts by reacting with and consuming high levels of intracellular GSH. Notably, CyR-SG generates high levels of ROS in tumor cells instead of normal cells and be exploited for PDT and the SG-L part is used for chemotherapy. CyR-SS-L inhibits better MDR cancer tumor inhibitory activity than indocyanine green, a photosensitizer (PS) used for PDT in clinical applications. The results appear to be the first to show that CyR-SS-L may be used as an alternative PDT agent to be more effective against MDR cancers without obvious damaging normal cells by the combination of PDT, GSH depletion, and chemotherapy.


Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Glutatión , Mitocondrias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Glutatión/metabolismo , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fotoquimioterapia/métodos , Animales , Ratones , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Modelos Animales de Enfermedad , Antineoplásicos/farmacología
20.
Transgenic Res ; 33(4): 243-254, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38902591

RESUMEN

Insect-protected soybean (SIP) that produces the Cry1A.105 and Cry2Ab2 insecticidal crystal proteins has been developed to provide protection from feeding damage caused by targeted lepidopteran insect pests. Typically, as part of environmental risk assessment (ERA), plant characterization is conducted, and the data submitted to regulatory agencies prior to commercialization of genetically modified (GM) crops. The objectives of this research were to: (a) compare soybean with and without the SIP trait in plant characterization field trials designed to fulfill requirements for submissions to global regulatory agencies and address China-specific considerations and (b) compare risk assessment conclusions across regions and the methodologies used in the field trials. The soybean with and without the SIP trait in temperate, tropical, and subtropical germplasm were planted in replicated multi-location trials in the USA (in 2012 and 2018) and Brazil (in 2013/2014 and 2017/2018). Agronomic, phenotypic, plant competitiveness, and survival characteristics were assessed for soybean entries with and without the SIP trait. Regardless of genetic background, growing region, season, or testing methodology, the risk assessment conclusions were the same: the evaluated insect-protected soybean did not differ from conventional soybean in evaluated agronomic, phenotypic, competitiveness, and survival characteristics indicating no change in plant pest/weed potential. These results reinforce the concept of data transportability across global regions, different seasons, germplasm, and methodologies that should be considered when assessing environmental risks of GM crops.


Asunto(s)
Glycine max , Plantas Modificadas Genéticamente , Glycine max/genética , Glycine max/parasitología , Glycine max/crecimiento & desarrollo , Animales , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Endotoxinas/genética , Brasil , Control Biológico de Vectores , Proteínas Hemolisinas/genética , Productos Agrícolas/genética , Insectos/genética , Insectos/patogenicidad , Lepidópteros/patogenicidad , Lepidópteros/genética , Proteínas Bacterianas/genética , Toxinas de Bacillus thuringiensis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA