Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 261: 116495, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878699

RESUMEN

In this study, we have for the first time constructed a ratiometric ECL biosensor for the ultrasensitive detection of microRNAs (miRNAs) using gold nanoparticles (Au NPs) to trigger both the low-potential emission from conjugated polymer poly(9,9-dioctylfluorene-2,7-diyl) dots (PFO Pdots) and the LSPR-ECL effect with sulfur-doped boron nitride quantum dots (S-BN QDs). PFO Pdots were first applied to the Au NPs-modified electrode, followed by covalent binding to capture the hairpin H1. Immediately thereafter, a small amount of miRNA-141 was able to generate a large amount of output DNA (OP) by traversing the target cycle. OP, H3-S-BN QDs, and H4-glucose oxidase (H4-GOD) were then added sequentially to the Au NPs-modified electrode surface, and the hybridization chain reaction (HCR) was initiated. This resulted in the introduction of a large amount of GOD into the system, which catalyzed the in situ formation of the co-reactant hydrogen peroxide (H2O2) from the substrate glucose. Due to the electron transfer effect, the production of H2O2 led to the ECL quenching of PFO Pdots. Meanwhile, H2O2 served as a co-reactant of S-BN QDs, resulting in strong ECL emission of S-BN QDs at the cathode. Furthermore, the cathodic ECL intensity of S-BN QDs was further enhanced by an LSPR-ECL mechanism between Au NPs and S-BN QDs. By measuring the ratio of ECL intensities at two excitation potentials, this approach could provide sensitive and reliable detection of miRNA-141 in the range of 0.1 fM ∼10 nM, with a detection limit of 0.1 fM.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Límite de Detección , Mediciones Luminiscentes , Nanopartículas del Metal , MicroARNs , Puntos Cuánticos , Técnicas Biosensibles/métodos , Oro/química , MicroARNs/análisis , Nanopartículas del Metal/química , Puntos Cuánticos/química , Técnicas Electroquímicas/métodos , Humanos , Mediciones Luminiscentes/métodos , Fluorenos/química , Glucosa Oxidasa/química , Peróxido de Hidrógeno/química
2.
Anal Chim Acta ; 1315: 342822, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879216

RESUMEN

In this study, a novel electrochemiluminescence (ECL) biosensor was developed to detect microRNA-21 (miRNA-21) with high sensitivity by leveraging the combined mechanisms of resonance energy transfer (RET) and surface plasmon coupling (SPC). Initially, the glassy carbon electrode (GCE) were coated with Cu-Zn-In-S quantum dots (CZIS QDs), known for their defect-related emission suitable for ECL sensing. Subsequently, a hairpin DNA H3 with gold nanoparticles (Au NPs) attached at the end was modified over the surface of the quantum dots. The Au NPs could effectively quench the ECL signals of CZIS QDs via RET. Further, a significant amount of report DNA was generated through the action of a 3D DNA walker. When the report DNA opened H3-Au NPs, the hairpin structure experienced a conformational change to a linear shape, increasing the gap between the CZIS QDs and the Au NPs. Consequently, the localized surface plasmon resonance ECL (LSPR-ECL) effect replaced ECL resonance energy transfer (ECL-RET). Moreover, the report DNA was released following the addition of H4-Au NPs, resulting in the formation of Au dimers and a surface plasma-coupled ECL (SPC-ECL) effect that enhanced the ECL intensity to 6.97-fold. The integration of new ECL-RET and SPC-ECL biosensor accurately quantified miRNA-21 concentrations from 10-8 M to 10-16 M with a limit of detection (LOD) of 0.08 fM, as well as successfully applied to validate human serum samples.


Asunto(s)
Técnicas Biosensibles , ADN , Técnicas Electroquímicas , Mediciones Luminiscentes , MicroARNs , Puntos Cuánticos , Resonancia por Plasmón de Superficie , MicroARNs/análisis , MicroARNs/sangre , Humanos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , ADN/química , Puntos Cuánticos/química , Resonancia por Plasmón de Superficie/métodos , Mediciones Luminiscentes/métodos , Oro/química , Límite de Detección , Transferencia de Energía , Nanopartículas del Metal/química
3.
Anal Chem ; 96(15): 5852-5859, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38556977

RESUMEN

A multicolor electrochemiluminescence (ECL) biosensor based on a closed bipolar electrode (BPE) array was proposed for the rapid and intuitive analysis of three prostate cancer staging indicators. First, [Irpic-OMe], [Ir(ppy)2(acac)], and [Ru(bpy)3]2+ were applied as blue, green, and red ECL emitters, respectively, whose mixed ECL emission colors covered the whole visible region by varying the applied voltages. Afterward, we designed a simple Mg2+-dependent DNAzyme (MNAzyme)-driven tripedal DNA walker (TD walker) to release three output DNAs. Immediately after, three output DNAs were added to the cathodic reservoirs of the BPE for incubation. After that, we found that the emission colors from the anode of the BPE changed as a driving voltage of 8.0 V was applied, mainly due to changes in the interfacial potential and faradaic currents at the two poles of the BPE. Via optimization of the experimental parameters, cutoff values of such three indicators at different clinical stages could be identified instantly with the naked eye, and standard precision swatches with multiple indicators could be prepared. Finally, in order to precisely determine the prostate cancer stage, the multicolor ECL device was used for clinical analysis, and the resulting images were then compared with standard swatches, laying the way for accurate prostate cancer therapy.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Próstata , Masculino , Humanos , Mediciones Luminiscentes/métodos , Fotometría , Neoplasias de la Próstata/diagnóstico , Antígeno Prostático Específico , ADN , Técnicas Biosensibles/métodos , Electrodos , Técnicas Electroquímicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA