Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Viruses ; 15(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36680200

RESUMEN

COVID-19 is still a global public health concern, and the SARS-CoV-2 mutations require more effective antiviral agents. In this study, the antiviral entry activity of thirty-one flavonoids was systematically evaluated by a SARS-CoV-2 pseudovirus model. Twenty-four flavonoids exhibited antiviral entry activity with IC50 values ranging from 10.27 to 172.63 µM and SI values ranging from 2.33 to 48.69. The structure-activity relationship of these flavonoids as SARS-CoV-2 entry inhibitors was comprehensively summarized. A subsequent biolayer interferometry assay indicated that flavonoids bind to viral spike RBD to block viral interaction with ACE2 receptor, and a molecular docking study also revealed that flavonols could bind to Pocket 3, the non-mutant regions of SARS-CoV-2 variants, suggesting that flavonols might be also active against virus variants. These natural flavonoids showed very low cytotoxic effects on human normal cell lines. Our findings suggested that natural flavonoids might be potential antiviral entry agents against SARS-CoV-2 via inactivating the viral spike. It is hoped that our study will provide some encouraging evidence for the use of natural flavonoids as disinfectants to prevent viral infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulación del Acoplamiento Molecular , Flavonoides/farmacología , Antivirales/farmacología , Flavonoles , Glicoproteína de la Espiga del Coronavirus/metabolismo , Unión Proteica
2.
Bioorg Med Chem ; 67: 116838, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35617790

RESUMEN

Honokiol, isolated from a traditional Chinese medicine (TCM) Magnolia officinalis, is a biphenolic compound with several biological activities. To improve and broaden its biological activity, herein, two series of honokiol thioethers bearing 1,3,4-oxadiazole moieties were prepared and assessed for their α-glucosidase and SARS-CoV-2 entry inhibitory activities. Among all the honokiol thioethers, compound 7l exhibited the strongest α-glucosidase inhibitory effect with an IC50 value of 18.9 ± 2.3 µM, which was superior to the reference drug acarbose (IC50 = 24.4 ± 0.3 µM). Some interesting results of structure-activity relationships (SARs) have also been discussed. Enzyme kinetic study demonstrated that 7l was a noncompetitive α-glucosidase inhibitor, which was further supported by the results of molecular docking. Moreover, honokiol thioethers 7e, 9a, 9e, and 9r exhibited potent antiviral activity against SARS-CoV-2 pseudovirus entering into HEK-293 T-ACE2h. Especially 9a displayed the strongest inhibitory activity against SARS-CoV-2 pseudovirus entry with an IC50 value of 16.96 ± 2.45 µM, which was lower than the positive control Evans blue (21.98 ± 1.98 µM). Biolayer interferometry (BLI) binding and docking studies suggested that 9a and 9r may effectively block the binding of SARS-CoV-2 to the host ACE2 receptor through dual recognition of SARS-CoV-2 spike RBD and human ACE2. Additionally, the potent honokiol thioethers 7l, 9a, and 9r displayed relatively no cytotoxicity to normal cells (LO2). These findings will provide a theoretical basis for the discovery of honokiol derivatives as potential both α-glucosidase and SARS-CoV-2 entry inhibitors.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Compuestos de Bifenilo , Células HEK293 , Humanos , Lignanos , Simulación del Acoplamiento Molecular , Oxadiazoles , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química , Sulfuros , alfa-Glucosidasas/metabolismo
3.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34577585

RESUMEN

The 2019 coronavirus disease (COVID-19) caused by SARS-CoV-2 virus infection has posed a serious danger to global health and the economy. However, SARS-CoV-2 medications that are specific and effective are still being developed. Honokiol is a bioactive component from Magnoliae officinalis Cortex with damp-drying effect. To develop new potent antiviral molecules, a series of novel honokiol analogues were synthesized by introducing various 3-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)oxazol-2(3H)-ones to its molecule. In a SARS-CoV-2 pseudovirus model, all honokiol derivatives were examined for their antiviral entry activities. As a result, 6a and 6p demonstrated antiviral entry effect with IC50 values of 29.23 and 9.82 µM, respectively. However, the parental honokiol had a very weak antiviral activity with an IC50 value more than 50 µM. A biolayer interfero-metry (BLI) binding assay and molecular docking study revealed that 6p binds to human ACE2 protein with higher binding affinity and lower binding energy than the parental honokiol. A competitive ELISA assay confirmed the inhibitory effect of 6p on SARS-CoV-2 spike RBD's binding with ACE2. Importantly, 6a and 6p (TC50 > 100 µM) also had higher biological safety for host cells than honokiol (TC50 of 48.23 µM). This research may contribute to the discovery of potential viral entrance inhibitors for the SARS-CoV-2 virus, although 6p's antiviral efficacy needs to be validated on SARS-CoV-2 viral strains in a biosafety level 3 facility.

4.
Journal of Medical Biomechanics ; (6): E148-E153, 2015.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-804442

RESUMEN

Objective To investigate effects of 3D co-culture of human keratinocytes (HKC) and human fibroblasts (HFB) under pressure on cell proliferation and collagen synthesis. Methods The HKC and HFB were planted on chitosan-gelatin scaffolds, respectively, for 2 d. The HKC-chitosan-gelatin complex (3D HKC) was cultured at air-liquid interface for 1 d to induce differentiation, and then co-cultured with the HFB-chitosan-gelatin complex (3D HFB) for 12 h. 3.4 kPa pressure was applied on the co-culture group for 24 h. The group of single culture with pressure, the group of single culture without pressure and the group of co-culture without pressure were used as control. HE staining was used to observe distribution and growth of HKC and HFB on chitosan-gelatin scaffolds. MTT method was used to test proliferation of HKC and HFB. Hydroxyproline kit was used to observe collagen concentration of the supernatant fluids. Results HE staining showed that HKC and HFB could grow confluently on chitosan-gelatin scaffolds;3.4 kPa pressure or co-culture both could promote the HKC proliferation and collagen synthesis, while restrain the HFB proliferation and collagen synthesis. Conclusions Pressure and co-culture play an important role in HKC and HFB proliferation and collagen synthesis. This research finding provides some reference for exploring the therapeutic mechanism of hyperplastic scar from clinical operation of resecting scar by transplanting tissue-engineered skin to the wound and then combined with pressure treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...