Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Med Phys ; 13(1): 4, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24059584

RESUMEN

BACKGROUND: The rapid adoption of image-guidance in prostate intensity-modulated radiotherapy (IMRT) results in longer treatment times, which may result in larger intrafraction motion, thereby negating the advantage of image-guidance. This study aims to qualify and quantify the contribution of image-guidance to the temporal dependence of intrafraction motion during prostate IMRT. METHODS: One-hundred and forty-three patients who underwent conventional IMRT (n=67) or intensity-modulated arc therapy (IMAT/RapidArc, n=76) for localized prostate cancer were evaluated. Intrafraction motion assessment was based on continuous RL (lateral), SI (longitudinal), and AP (vertical) positional detection of electromagnetic transponders at 10 Hz. Daily motion amplitudes were reported as session mean, median, and root-mean-square (RMS) displacements. Temporal effect was evaluated by categorizing treatment sessions into 4 different classes: IMRTc (transponder only localization), IMRTcc (transponder + CBCT localization), IMATc (transponder only localization), or IMATcc (transponder + CBCT localization). RESULTS: Mean/median session times were 4.15/3.99 min (IMATc), 12.74/12.19 min (IMATcc), 5.99/5.77 min (IMRTc), and 12.98/12.39 min (IMRTcc), with significant pair-wise difference (p<0.0001) between all category combinations except for IMRTcc vs. IMATcc (p>0.05). Median intrafraction motion difference between CBCT and non-CBCT categories strongly correlated with time for RMS (t-value=17.29; p<0.0001), SI (t-value=-4.25; p<0.0001), and AP (t-value=2.76; p<0.0066), with a weak correlation for RL (t-value=1.67; p=0.0971). Treatment time reduction with non-CBCT treatment categories showed reductions in the observed intrafraction motion: systematic error (Σ)<0.6 mm and random error (σ)<1.2 mm compared with ≤0.8 mm and <1.6 mm, respectively, for CBCT-involved treatment categories. CONCLUSIONS: For treatment durations >4-6 minutes, and without any intrafraction motion mitigation protocol in place, patient repositioning is recommended, with at least the acquisition of the lateral component of an orthogonal image pair in the absence of volumetric imaging.

2.
Med Dosim ; 38(4): 407-12, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23810414

RESUMEN

To compare 2 beam arrangements, sectored (beam entry over ipsilateral hemithorax) vs circumferential (beam entry over both ipsilateral and contralateral lungs), for static-gantry intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques with respect to target and organs-at-risk (OAR) dose-volume metrics, as well as treatment delivery efficiency. Data from 60 consecutive patients treated using stereotactic body radiation therapy (SBRT) for primary non-small-cell lung cancer (NSCLC) formed the basis of this study. Four treatment plans were generated per data set: IMRT/VMAT plans using sectored (-s) and circumferential (-c) configurations. The prescribed dose (PD) was 60Gy in 5 fractions to 95% of the planning target volume (PTV) (maximum PTV dose ~ 150% PD) for a 6-MV photon beam. Plan conformality, R50 (ratio of volume circumscribed by the 50% isodose line and the PTV), and D2cm (Dmax at a distance ≥2cm beyond the PTV) were evaluated. For lungs, mean doses (mean lung dose [MLD]) and percent V30/V20/V10/V5Gy were assessed. Spinal cord and esophagus Dmax and D5/D50 were computed. Chest wall (CW) Dmax and absolute V30/V20/V10/V5Gy were reported. Sectored SBRT planning resulted in significant decrease in contralateral MLD and V10/V5Gy, as well as contralateral CW Dmax and V10/V5Gy (all p < 0.001). Nominal reductions of Dmax and D5/D50 for the spinal cord with sectored planning did not reach statistical significance for static-gantry IMRT, although VMAT metrics did show a statistically significant decrease (all p < 0.001). The respective measures for esophageal doses were significantly lower with sectored planning (p < 0.001). Despite comparable dose conformality, irrespective of planning configuration, R50 significantly improved with IMRT-s/VMAT-c (p < 0.001/p = 0.008), whereas D2cm significantly improved with VMAT-c (p < 0.001). Plan delivery efficiency improved with sectored technique (p < 0.001); mean monitor unit (MU)/cGy of PD decreased from 5.8 ± 1.9 vs 5.3 ± 1.7 (IMRT) and 2.7 ± 0.4 vs 2.4 ± 0.3 (VMAT). The sectored configuration achieves unambiguous dosimetric advantages over circumferential arrangement in terms of esophageal, contralateral CW, and contralateral lung sparing, in addition to being more efficient at delivery.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/cirugía , Radiocirugia , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...