Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37905834

RESUMEN

An aspartate peptidase with proteolytic activity toward gluten was identified from an isolated red yeast Rhodotorula mucilaginosa strain. This peptidase consists of 425 amino acids, comprising an N-terminal signal peptide, a propeptide, and a C-terminal catalytic domain. The catalytic domain, termed RmuAP1CD, could be secreted by the recombinant oleaginous yeast Yarrowia lipolytica, whose genome contains the expression cassette for RmuAP1CD. RmuAP1CD exhibited optimum activity at pH 2.5 when acting on bovine serum albumin. Moreover, it facilitated the hydrolysis of gluten-derived immunogenic peptides (GIPs), which are responsible for triggering celiac disease symptoms, across a pH range of 3.0-6.0. The preferred cleavage sites are P-Q-Q-↓-P-Q in the 26-mer and P-Q-L-↓-P-Y in the 33-mer GIPs. Conversely, porcine pepsin cannot hydrolyze these two GIPs. The ability of RmuAP1CD to degrade GIPs under acidic conditions of the stomach indicates its potential as a viable oral enzyme therapy for celiac disease.

2.
Sci Total Environ ; 896: 165152, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37391160

RESUMEN

Steroidal estrogens are ubiquitous contaminants that have garnered attention worldwide due to their endocrine-disrupting and carcinogenic activities at sub-nanomolar concentrations. Microbial degradation is one of the main mechanisms through which estrogens can be removed from the environment. Numerous bacteria have been isolated and identified as estrogen degraders; however, little is known about their contribution to environmental estrogen removal. Here, our global metagenomic analysis indicated that estrogen degradation genes are widely distributed among bacteria, especially among aquatic actinobacterial and proteobacterial species. Thus, by using the Rhodococcus sp. strain B50 as the model organism, we identified three actinobacteria-specific estrogen degradation genes, namely aedGHJ, by performing gene disruption experiments and metabolite profile analysis. Among these genes, the product of aedJ was discovered to mediate the conjugation of coenzyme A with a unique actinobacterial C17 estrogenic metabolite, 5-oxo-4-norestrogenic acid. However, proteobacteria were found to exclusively adopt an α-oxoacid ferredoxin oxidoreductase (i.e., the product of edcC) to degrade a proteobacterial C18 estrogenic metabolite, namely 3-oxo-4,5-seco-estrogenic acid. We employed actinobacterial aedJ and proteobacterial edcC as specific biomarkers for quantitative polymerase chain reaction (qPCR) to elucidate the potential of microbes for estrogen biodegradation in contaminated ecosystems. The results indicated that aedJ was more abundant than edcC in most environmental samples. Our results greatly expand the understanding of environmental estrogen degradation. Moreover, our study suggests that qPCR-based functional assays are a simple, cost-effective, and rapid approach for holistically evaluating estrogen biodegradation in the environment.


Asunto(s)
Ecosistema , Estrógenos , Estrógenos/metabolismo , Estrona/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Proteobacteria/genética
3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675314

RESUMEN

Brown planthopper (BPH), a monophagous phloem feeder, consumes a large amount of photoassimilates in rice and causes wilting. A near-isogenic line 'TNG71-Bph45' was developed from the Oryza sativa japonica variety 'Tainung 71 (TNG71) carrying a dominant BPH-resistance locus derived from Oryza nivara (IRGC 102165) near the centromere of chromosome 4. We compared the NIL (TNG71-Bph45) and the recurrent parent to explore how the Bph45 gene confers BPH resistance. We found that TNG71-Bph45 is less attractive to BPH at least partially because it produces less limonene. Chiral analysis revealed that the major form of limonene in both rice lines was the L-form. However, both L- and D-limonene attracted BPH when applied exogenously to TNG71-Bph45 rice. The transcript amounts of limonene synthase were significantly higher in TNG71 than in TNG71-Bph45 and were induced by BPH infestation only in the former. Introgression of the Bph45 gene into another japonica variety, Tainan 11, also resulted in a low limonene content. Moreover, several dominantly acting BPH resistance genes introduced into the BPH-sensitive IR24 line compromised its limonene-producing ability and concurrently decreased its attractiveness to BPH. These observations suggest that reducing limonene production may be a common resistance strategy against BPH in rice.


Asunto(s)
Hemípteros , Oryza , Animales , Genes de Plantas , Hemípteros/genética , Limoneno , Oryza/genética , Enfermedades de las Plantas/genética
4.
Cell Biol Toxicol ; 39(5): 1873-1896, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-34973135

RESUMEN

BACKGROUND AND PURPOSE: Histone deacetylase (HDAC) inhibitors (HDIs) can modulate the epithelial-mesenchymal transition (EMT) progression and inhibit the migration and invasion of cancer cells. Emerging as a novel class of anti-cancer drugs, HDIs are attracted much attention in the field of drug discovery. This study aimed to discern the underlying mechanisms of Honokiol in preventing the metastatic dissemination of gastric cancer cells by inhibiting HDAC3 activity/expression. EXPERIMENTAL APPROACH: Clinical pathological analysis was performed to determine the relationship between HDAC3 and tumor progression. The effects of Honokiol on pharmacological characterization, functional, transcriptional activities, organelle structure changes, and molecular signaling were analyzed using binding assays, differential scanning calorimetry, luciferase reporter assay, HDAC3 activity, ER stress response element activity, transmission electron microscopy, immune-blotting, and Wnt/ß-catenin activity assays. The in vivo effects of Honokiol on peritoneal dissemination were determined by a mouse model and detected by PET/CT tomography. KEY RESULTS: HDAC3 over-expression was correlated with poor prognosis. Honokiol significantly abolished HDAC3 activity (Y298) via inhibition of NFκBp65/CEBPß signaling, which could be reversed by the over-expression of plasmids of NFκBp65/CEBPß. Treatments with 4-phenylbutyric acid (a chemical chaperone) and calpain-2 gene silencing inhibited Honokiol-inhibited NFκBp65/CEBPß activation. Honokiol increased ER stress markers and inhibited EMT-associated epithelial markers, but decreased Wnt/ß-catenin activity. Suppression of HDAC3 by both Honokiol and HDAC3 gene silencing decreased cell migration and invasion in vitro and metastasis in vivo. CONCLUSIONS AND IMPLICATIONS: Honokiol acts by suppressing HDAC3-mediated EMT and metastatic signaling. By prohibiting HDAC3, metastatic dissemination of gastric cancer may be blocked. Conceptual model showing the working hypothesis on the interaction among Honokiol, HDAC3, and ER stress in the peritoneal dissemination of gastric cancer. Honokiol targeting HDAC3 by ER stress cascade and mitigating the peritoneal spread of gastric cancer. Honokiol-induced ER stress-activated calpain activity targeted HDAC3 and blocked Tyr298 phosphorylation, subsequently blocked cooperating with EMT transcription factors and cancer progression. The present study provides evidence to demonstrate that HDAC3 is a positive regulator of EMT and metastatic growth of gastric cancer cells. The findings here imply that overexpressed HDAC3 is a potential therapeutic target for honokiol to reverse EMT and prevent gastric cancer migration, invasion, and metastatic dissemination. • Honokiol significantly abolished HDAC3 activity on catalytic tyrosine 298 residue site. In addition, Honokiol-induced ER stress markedly inhibited HDAC3 expression via inhibition of NFκBp65/CEBPß signaling. • HDAC3, which is a positive regulator of metastatic gastric cancer cell growth, can be significantly inhibited by Honokiol. • Opportunities for HDAC3 inhibition may be a potential therapeutic target for preventing gastric cancer metastatic dissemination.


Asunto(s)
Neoplasias Gástricas , beta Catenina , Animales , Ratones , Calpaína/antagonistas & inhibidores , Calpaína/genética , Calpaína/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Histona Desacetilasas/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Inhibidores de Histona Desacetilasas
5.
Plant Physiol ; 191(2): 904-924, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36459587

RESUMEN

Intracellular movement is an important step for the initial spread of virus in plants during infection. This process requires virus-encoded movement proteins (MPs) and their interaction with host factors. Despite the large number of known host factors involved in the movement of different viruses, little is known about host proteins that interact with one of the MPs encoded by potexviruses, the triple-gene-block protein 3 (TGBp3). The main obstacle lies in the relatively low expression level of potexviral TGBp3 in hosts and the weak or transient nature of interactions. Here, we used TurboID-based proximity labeling to identify the network of proteins directly or indirectly interacting with the TGBp3 of a potexvirus, Bamboo mosaic virus (BaMV). Endoplasmic reticulum (ER) luminal-binding protein 4 and calreticulin 3 of Nicotiana benthamiana (NbBiP4 and NbCRT3, respectively) associated with the functional TGBp3-containing BaMV movement complexes, but not the movement-defective mutant, TGBp3M. Fluorescent microscopy revealed that TGBp3 colocalizes with NbBiP4 or NbCRT3 and the complexes move together along ER networks to cell periphery in N. benthamiana. Loss- and gain-of-function experiments revealed that NbBiP4 or NbCRT3 is required for the efficient spread and accumulation of BaMV in infected leaves. In addition, overexpression of NbBiP4 or NbCRT3 enhanced the targeting of BaMV TGBp1 to plasmodesmata (PD), indicating that NbBiP4 and NbCRT3 interact with TGBp3 to promote the intracellular transport of virion cargo to PD that facilitates virus cell-to-cell movement. Our findings revealed additional roles for NbBiP4 and NbCRT3 in BaMV intracellular movement through ER networks or ER-derived vesicles to PD, which enhances the spread of BaMV in N. benthamiana.


Asunto(s)
Potexvirus , Proteínas Virales , Proteínas Virales/metabolismo , Proteínas Portadoras/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Plantas/metabolismo , Nicotiana/metabolismo , Retículo Endoplásmico/metabolismo
6.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203677

RESUMEN

Celiac disease is an autoimmune disease triggered by oral ingestion of gluten, with certain gluten residues resistant to digestive tract enzymes. Within the duodenum, the remaining peptides incite immunogenic responses, including the generation of autoantibodies and inflammation, leading to irreversible damage. Our previous exploration unveiled a glutenase called Bga1903 derived from the Gram-negative bacterium Burkholderia gladioli. The cleavage pattern of Bga1903 indicates its moderate ability to mitigate the toxicity of pro-immunogenic peptides. The crystal structure of Bga1903, along with the identification of subsites within its active site, was determined. To improve its substrate specificity toward prevalent motifs like QPQ within gluten peptides, the active site of Bga1903 underwent site-directed mutagenesis according to structural insights and enzymatic kinetics. Among the double-site mutants, E380Q/S387L exhibits an approximately 34-fold increase in its specificity constant toward the QPQ sequence, favoring glutamines at the P1 and P3 positions compared to the wild type. The increased specificity of E380Q/S387L not only enhances its ability to break down pro-immunogenic peptides but also positions this enzyme variant as a promising candidate for oral therapy for celiac disease.


Asunto(s)
Enfermedades Autoinmunes , Enfermedad Celíaca , Humanos , Dominio Catalítico , Glútenes , Autoanticuerpos , Fármacos Gastrointestinales
7.
Int J Biol Macromol ; 222(Pt B): 2258-2269, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36209912

RESUMEN

Celiac disease (CD) is a human autoimmune disease triggered by toxic gluten peptides. Recently, oral enzyme therapy has been proposed to ameliorate the health condition of CD patients based on the concept of removing pepsin-insensitive gluten-derived pro-immunogenic peptides. A Burkholderia peptidase, Bga1903, with promising gluten-degrading activity was characterized previously. Here, we report the crystal structure of Bga1903, in which the core has a α/ß/α fold featured with a twisted six-stranded parallel ß-sheet sandwiched between two layers of α-helices. The mutations at the substrate-binding pocket that might enhance the peptidase's affinity toward tetrapeptide PQPQ were predicted by FoldX. Accordingly, four single-substitution mutants, G351A, E380L, S386F, and S387L, were created. The specificity constant (kcat/KM) of wild type toward chromogenic peptidyl substrates Z-HPK-pNA, Z-HPQ-pNA, Z-HPL-pNA, and Z-QPQ-pNA are 30.2, 7.9, 3.3, and 0.79 s-1·mM-1, respectively, indicating that the QPQ motif, which frequently occurs in pro-immunogenic peptides, is not favorable. Among the mutants, E380L loses the hydrolytic activity toward Z-HPK-pNA, suggesting a critical role of E380 in preferring a lysine residue at the P1 position. S387L shows a 17-fold increase in the specificity constant toward Z-QPQ-pNA and hydrolyzes the pro-immunogenic peptides more efficiently than the wild-type peptidase.


Asunto(s)
Burkholderia , Enfermedad Celíaca , Humanos , Glútenes/metabolismo , Péptido Hidrolasas , Burkholderia/metabolismo , Péptidos/química , Sitios de Unión
8.
Molecules ; 27(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889228

RESUMEN

Plant-parasitic nematodes (PPNs) constitute the most damaging group of plant pathogens. Plant infections by root-knot nematodes (RKNs) alone could cause approximately 5% of global crop loss. Conventionally, chemical-based methods are used to control PPNs at the expense of the environment and human health. Accordingly, the development of eco-friendly and safer methods has been urged to supplement or replace chemical-based methods for the control of RKNs. Using microorganisms or their metabolites as biological control agents (BCAs) is a promising approach to controlling RKNs. Among the metabolites, volatile organic compounds (VOCs) have gained increasing attention because of their potential in the control of not only RKNs but also other plant pathogens, such as insects, fungi, and bacteria. This review discusses the biology of RKNs as well as the status of various control strategies. The discovery of VOCs emitted by bacteria from various environmental sources and their application potential as BCAs in controlling RKNs are specifically addressed.


Asunto(s)
Tylenchoidea , Compuestos Orgánicos Volátiles , Animales , Bacterias , Humanos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Plantas/parasitología , Compuestos Orgánicos Volátiles/farmacología
9.
Molecules ; 27(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897889

RESUMEN

Plant-parasitic nematodes infect a diversity of crops, resulting in severe economic losses in agriculture. Microbial volatile organic compounds (VOCs) are potential agents to control plant-parasitic nematodes and other pests. In this study, VOCs emitted by a dozen bacterial strains were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry. Fumigant toxicity of selected VOCs, including dimethyl disulfide (DMDS), 2-butanone, 2-pentanone, 2-nonanone, 2-undecanone, anisole, 2,5-dimethylfuran, glyoxylic acid, and S-methyl thioacetate (MTA) was then tested against Caenorhabditis elegans. DMDS and MTA exhibited much stronger fumigant toxicity than the others. Probit analysis suggested that the values of LC50 were 8.57 and 1.43 µg/cm3 air for DMDS and MTA, respectively. MTA also showed stronger fumigant toxicity than DMDS against the root-knot nematode Meloidogyne incognita, suggesting the application potential of MTA.


Asunto(s)
Plaguicidas , Tylenchoidea , Compuestos Orgánicos Volátiles , Animales , Bacterias , Caenorhabditis elegans , Productos Agrícolas , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología
10.
Microb Biotechnol ; 15(3): 949-966, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34523795

RESUMEN

Steroidal oestrogens (C18 ) are contaminants receiving increasing attention due to their endocrine-disrupting activities at sub-nanomolar concentrations. Although oestrogens can be eliminated through photodegradation, microbial function is critical for removing oestrogens from ecosystems devoid of sunlight exposure including activated sludge, soils and aquatic sediments. Actinobacteria were found to be key oestrogen degraders in manure-contaminated soils and estuarine sediments. Previously, we used the actinobacterium Rhodococcus sp. strain B50 as a model microorganism to identify two oxygenase genes, aedA and aedB, involved in the activation and subsequent cleavage of the estrogenic A-ring respectively. However, genes responsible for the downstream degradation of oestrogen A/B-rings remained completely unknown. In this study, we employed tiered comparative transcriptomics, gene disruption experiments and mass spectrometry-based metabolite profile analysis to identify oestrogen catabolic genes. We observed the up-regulation of thiolase-encoding aedF and aedK in the transcriptome of strain B50 grown with oestrone. Consistently, two downstream oestrogenic metabolites, 5-oxo-4-norestrogenic acid (C17 ) and 2,3,4-trinorestrogenic acid (C15 ), were accumulated in aedF- and aedK-disrupted strain B50 cultures. Disruption of fadD3 [3aα-H-4α(3'-propanoate)-7aß-methylhexahydro-1,5-indanedione (HIP)-coenzyme A-ligase gene] in strain B50 resulted in apparent HIP accumulation in oestrone-fed cultures, indicating the essential role of fadD3 in actinobacterial oestrogen degradation. In addition, we detected a unique meta-cleavage product, 4,5-seco-estrogenic acid (C18 ), during actinobacterial oestrogen degradation. Differentiating the oestrogenic metabolite profile and degradation genes of actinobacteria and proteobacteria enables the cost-effective and time-saving identification of potential oestrogen degraders in various ecosystems through liquid chromatography-mass spectrometry analysis and polymerase chain reaction-based functional assays.


Asunto(s)
Actinobacteria , Actinobacteria/genética , Actinobacteria/metabolismo , Bacterias/metabolismo , Ecosistema , Estrógenos/metabolismo , Estrona , Suelo
11.
BMC Cancer ; 21(1): 1141, 2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34689739

RESUMEN

BACKGROUND: Studies have shown that human polyomavirus infection may be associated with various human cancers. We investigated the potential relationship between the prevalence of JCPyVor BKPyV and prostate cancer (PC) in patients from Taiwan. METHODS: Patients with PC and benign prostate hypertrophy (BPH; 76 and 30 patients, respectively) were recruited for this study. Paraffin-embedded tissues and clinical information of the patients were obtained. The tissue sections were used for viral DNA detection and immunohistochemistry analysis was performed for examining viral large T (LT) and VP1 proteins. Regression analysis was used to evaluate the relationship between the clinical characteristics of the patients and the risk of JCPyV/BKPyV infection. RESULTS: The prevalence of JCPyV/BKPyV DNA was different in PC and BPH tissues (27/76 [35.52%] and 2/30 [6.7%], respectively, p = 0.003)]. The LT and VP1 proteins were detected in 27 (35.52%) and 29 PC (38.2%) specimens, respectively, but neither protein was detected in BPH samples (p < 0.001). PC cells were more susceptible to JCPyV infection than BPH tissues [odds ratio (OR) 7.71, 95% CI: 1.71-34.09, p = 0.003). Patients with PC showing high levels of prostate-specific antigen and high Gleason scores were associated with a high risk of viral infection (ORs 1.1, 95% CI 1.000-1.003; p = 0.045 and ORs 6.18, 95% CI 1.26-30.33, p = 0.025, respectively). The expression of LT protein associated with the risk of PC increased 2923.39-fold (95% CI 51.19-166,963.62, p < 0.001). CONCLUSIONS: The findings indicate that JCPyV infection in PC cells may be associated with prostate cancer progression and prognosis.


Asunto(s)
Poliomavirus/genética , Hiperplasia Prostática/genética , Neoplasias de la Próstata/genética , Anciano , Humanos , Masculino
12.
J Virol ; 95(20): e0083121, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34379502

RESUMEN

Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.


Asunto(s)
Nicotiana/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Potexvirus/metabolismo , Regiones no Traducidas 3' , Cloroplastos/metabolismo , Proteínas de Plantas/genética , Potexvirus/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN/genética , ARN/metabolismo , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Nicotiana/genética , Nicotiana/virología , Proteínas Virales/metabolismo , Proteinas del Complejo de Replicasa Viral/genética , Proteinas del Complejo de Replicasa Viral/metabolismo , Replicación Viral/fisiología
13.
Biomolecules ; 11(3)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802942

RESUMEN

Celiac disease is an autoimmune disorder triggered by toxic peptides derived from incompletely digested glutens in the stomach. Peptidases that can digest the toxic peptides may formulate an oral enzyme therapy to improve the patients' health condition. Bga1903 is a serine endopeptidase secreted by Burkholderia gladioli. The preproprotein of Bga1903 consists of an N-terminal signal peptide, a propeptide region, and an enzymatic domain that belongs to the S8 subfamily. Bga1903 could be secreted into the culture medium when it was expressed in E. coli. The purified Bga1903 is capable of hydrolyzing the gluten-derived toxic peptides, such as the 33- and 26-mer peptides, with the preference for the peptide bonds at the carbonyl site of glutamine (P1 position). The kinetic assay of Bga1903 toward the chromogenic substrate Z-HPQ-pNA at 37 °C, pH 7.0, suggests that the values of Km and kcat are 0.44 ± 0.1 mM and 17.8 ± 0.4 s-1, respectively. The addition of Bga1903 in the wort during the fermentation step of beer could help in making gluten-free beer. In summary, Bga1903 is usable to reduce the gluten content in processed foods and represents a good candidate for protein engineering/modification aimed to efficiently digest the gluten at the gastric condition.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia gladioli/enzimología , Enfermedad Celíaca/metabolismo , Glútenes/metabolismo , Péptidos/metabolismo , Serina Proteasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cerveza , Burkholderia gladioli/genética , Enfermedad Celíaca/inmunología , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Fermentación , Gliadina/inmunología , Gliadina/metabolismo , Glútenes/inmunología , Humanos , Hidrólisis , Péptidos/inmunología , Proteínas Recombinantes/metabolismo , Serina Proteasas/genética , Especificidad por Sustrato
14.
Microb Biotechnol ; 14(3): 1212-1227, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33764689

RESUMEN

Steroidal oestrogens are often accumulated in urban estuarine sediments worldwide at microgram per gram levels. These aromatic steroids have been classified as endocrine disruptors and group 1 carcinogens. Microbial degradation is a naturally occurring mechanism that mineralizes oestrogens in the biosphere; however, the corresponding genes in oestrogen-degrading actinobacteria remain unidentified. In this study, we identified a gene cluster encoding several putative oestrogen-degrading genes (aed; actinobacterial oestrogen degradation) in actinobacterium Rhodococcus sp. strain B50. Among them, the aedA and aedB genes involved in oestrogenic A-ring cleavage were identified through gene-disruption experiments. We demonstrated that actinobacterial oestrone 4-hydroxylase (AedA) is a cytochrome P450-type monooxygenase. We also detected the accumulation of two extracellular oestrogenic metabolites, including pyridinestrone acid (PEA) and 3aα-H-4α(3'-propanoate)-7aß-methylhexahydro-1,5-indanedione (HIP), in the oestrone-fed strain B50 cultures. Since actinobacterial aedB and proteobacterial edcB shared < 40% sequence identity, 4-hydroxyestrone 4,5-dioxygenase genes (namely aedB and edcB) could serve as a specific biomarker to differentiate the contribution of actinobacteria and proteobacteria in environmental oestrogen degradation. Therefore, 4-hydroxyestrone 4,5-dioxygenase genes and the extracellular metabolites PEA and HIP were used as biomarkers to investigate oestrogen biodegradation in an urban estuarine sediment. Interestingly, our data suggested that actinobacteria are active oestrogen degraders in the urban estuarine sediment.


Asunto(s)
Actinobacteria , Actinobacteria/genética , Bacterias , Biodegradación Ambiental , Estrógenos , Sedimentos Geológicos , Filogenia
15.
Molecules ; 26(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572680

RESUMEN

A Burkholderia gladioli strain, named BBB-01, was isolated from rice shoots based on the confrontation plate assay activity against several plant pathogenic fungi. The genome of this bacterial strain consists of two circular chromosomes and one plasmid with 8,201,484 base pairs in total. Pangenome analysis of 23 B. gladioli strains suggests that B. gladioli BBB-01 has the closest evolutionary relationship to B. gladioli pv. gladioli and B. gladioli pv. agaricicola. B. gladioli BBB-01 emitted dimethyl disulfide and 2,5-dimethylfuran when it was cultivated in lysogeny broth and potato dextrose broth, respectively. Dimethyl disulfide is a well-known pesticide, while the bioactivity of 2,5-dimethylfuran has not been reported. In this study, the inhibition activity of the vapor of these two compounds was examined against phytopathogenic fungi, including Magnaporthe oryzae, Gibberella fujikuroi, Sarocladium oryzae, Phellinus noxius and Colletotrichumfructicola, and human pathogen Candida albicans. In general, 2,5-dimethylfuran is more potent than dimethyl disulfide in suppressing the growth of the tested fungi, suggesting that 2,5-dimethylfuran is a potential fumigant to control plant fungal disease.


Asunto(s)
Antifúngicos/metabolismo , Antifúngicos/farmacología , Burkholderia gladioli/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
16.
Viruses ; 11(11)2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717440

RESUMEN

Thermobifida fusca is of biotechnological interest due to its ability to produce an array of plant cell wall hydrolytic enzymes. Nonetheless, only one T. fusca bacteriophage with genome information has been reported to date. This study was aimed at discovering more relevant bacteriophages to expand the existing knowledge of phage diversity for this host species. With this end in view, a thermostable T. fusca bacteriophage P318, which belongs to the Siphoviridae family, was isolated and characterized. P318 has a double-stranded DNA genome of 48,045 base pairs with 3'-extended COS ends, on which 52 putative ORFs are organized into clusters responsible for the order of genome replication, virion morphogenesis, and the regulation of the lytic/lysogenic cycle. In comparison with T. fusca and the previously discovered bacteriophage P1312, P318 has a much lower G+C content in its genome except at the region encompassing ORF42, which produced a protein with unknown function. P1312 and P318 share very few similarities in their genomes except for the regions encompassing ORF42 of P318 and ORF51 of P1312 that are homologous. Thus, acquisition of ORF42 by lateral gene transfer might be an important step in the evolution of P318.


Asunto(s)
Actinobacteria/virología , Bacteriófagos/aislamiento & purificación , Siphoviridae/aislamiento & purificación , Bacteriófagos/genética , ADN Viral , Ontología de Genes , Transferencia de Gen Horizontal , Genoma Viral/fisiología , Filogenia , Siphoviridae/genética , Thermobifida , Proteínas Virales/genética
17.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31511381

RESUMEN

Bamboo mosaic virus (BaMV), a member of the Potexvirus genus, has a monopartite positive-strand RNA genome on which five open reading frames (ORFs) are organized. ORF1 encodes a 155-kDa nonstructural protein (REPBaMV) that plays a core function in replication/transcription of the viral genome. To find out cellular factors modulating the replication efficiency of BaMV, a putative REPBaMV-associated protein complex from Nicotiana benthamiana leaf was isolated on an SDS-PAGE gel, and a few proteins preferentially associated with REPBaMV were identified by tandem mass spectrometry. Among them, proliferating cell nuclear antigen (PCNA) was particularly noted. Overexpression of PCNA strongly suppressed the accumulation of BaMV coat protein and RNAs in leaf protoplasts. In addition, PCNA exhibited an inhibitory effect on BaMV polymerase activity. A pulldown assay confirmed a binding capability of PCNA toward BaMV genomic RNA. Mutations at D41 or F114 residues, which are critical for PCNA to function in nuclear DNA replication and repair, disabled PCNA from binding BaMV genomic RNA as well as suppressing BaMV replication. This suggests that PCNA bound to the viral RNA may interfere with the formation of a potent replication complex or block the replication process. Interestingly, BaMV is almost invisible in the newly emerging leaves where PCNA is actively expressed. Accordingly, PCNA is probably one of the factors restricting the proliferation of BaMV in young leaves. Foxtail mosaic virus and Potato virus X were also suppressed by PCNA in the protoplast experiment, suggesting a general inhibitory effect of PCNA on the replication of potexviruses.IMPORTANCE Knowing the dynamic interplay between plant RNA viruses and their host is a basic step toward first understanding how the viruses survive the plant defense mechanisms and second gaining knowledge of pathogenic control in the field. This study found that plant proliferating cell nuclear antigen (PCNA) imposes a strong inhibition on the replication of several potexviruses, including Bamboo mosaic virus, Foxtail mosaic virus, and Potato virus X Based on the tests on Bamboo mosaic virus, PCNA is able to bind the viral genomic RNA, and this binding is a prerequisite for the protein to suppress the virus replication. This study also suggests that PCNA plays an important role in restricting the proliferation of potexviruses in the rapidly dividing tissues of plants.


Asunto(s)
Potexvirus/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas no Estructurales Virales/metabolismo , Regiones no Traducidas 3'/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma Viral/genética , Hojas de la Planta/virología , Proteínas de Plantas/genética , Potexvirus/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Nicotiana/metabolismo , Nicotiana/virología , Proteínas no Estructurales Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/fisiología
18.
Mol Plant Pathol ; 19(10): 2319-2332, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29806182

RESUMEN

In plants, the mitogen-activated protein kinase (MAPK) cascades are the central signaling pathways of the complicated defense network triggered by the perception of pathogen-associated molecular patterns to repel pathogens. The Arabidopsis thaliana MAPK phosphatase 1 (AtMKP1) negatively regulates the activation of MAPKs. Recently, the AtMKP1 homolog of Nicotiana benthamiana (NbMKP1) was found in association with the Bamboo mosaic virus (BaMV) replication complex. This study aimed to investigate the role of NbMKP1 in BaMV multiplication in N. benthamiana. Silencing of NbMKP1 increased accumulations of the BaMV-encoded proteins and the viral genomic RNA, although the same condition reduced the infectivity of Pseudomonas syringae pv. tomato DC3000 in N. benthamiana. On the other hand, overexpression of NbMKP1 decreased the BaMV coat protein accumulation in a phosphatase activity-dependent manner in protoplasts. NbMKP1 also negatively affected the in vitro RNA polymerase activity of the BaMV replication complex. Collectively, the activity of NbMKP1 seems to reduce BaMV multiplication, inconsistent with the negatively regulatory role of MKP1 in MAPK cascades in terms of warding off fungal and bacterial invasion. In addition, silencing of NbMKP1 increased the accumulation of Foxtail mosaic virus but decreased Potato virus X. The discrepant effects exerted by NbMKP1 on different pathogens foresee the difficulty to develop plants with broad-spectrum resistance through genetically manipulating a single player in MAPK cascades.


Asunto(s)
Nicotiana/metabolismo , Nicotiana/virología , Proteínas de Plantas/metabolismo , Potexvirus/patogenicidad , Proteínas Tirosina Fosfatasas/metabolismo , Replicación Viral/fisiología , Proteínas de Plantas/genética , Potexvirus/genética , Proteínas Tirosina Fosfatasas/genética , ARN Viral/genética , Nicotiana/genética , Replicación Viral/genética
19.
Anticancer Res ; 38(3): 1377-1389, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29491062

RESUMEN

BACKGROUND/AIM: Anti-cancer activity of 3,5,7-trihydroxyflavone (galangin) has been documented in a variety of cancer types; however, its effect on human nasopharyngeal carcinoma (NPC) cells remains undetermined. MATERIALS AND METHODS: Human NPC cell lines were treated with galangin. Apoptosis was analyzed by assessing nuclear condensation, cleavage of pro-caspase-3 and poly ADP-ribose polymerase (PARP), and DNA fragmentation. Short hairpin RNA-mediated silencing of p53 was used for characterizing the role of p53 in the anti-cancer activity of galangin. Phosphatidylinositol 3-kinase (PI3K) inhibitor, protein kinase B (AKT) inhibitor, and ectopic expression of wild type p85α or p85α mutant lacking p110α-binding ability were utilized to confirm the involvement of PI3K/AKT inactivation in galangin-induced apoptosis. RESULTS: Galangin induces apoptosis and S-phase arrest by attenuating the PI3K/AKT signaling pathway. Silencing of p53 did not block the anti-cancer activity of galangin on NPC cells. CONCLUSION: Galangin effects on apoptosis and S-phase arrest in NPC cells are mediated via interfering with the PI3K-AKT signaling pathway in a p53-independent manner.


Asunto(s)
Apoptosis/efectos de los fármacos , Flavonoides/farmacología , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Caspasa 3/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Proteína p53 Supresora de Tumor/genética
20.
Front Microbiol ; 8: 522, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28400766

RESUMEN

The genus Potexvirus is one of the eight genera belonging to the family Alphaflexiviridae according to the Virus Taxonomy 2015 released by International Committee on Taxonomy of Viruses (www.ictvonline.org/index.asp). Currently, the genus contains 35 known species including many agricultural important viruses, e.g., Potato virus X (PVX). Members of this genus are characterized by flexuous, filamentous virions of 13 nm in diameter and 470-580 nm in length. A potexvirus has a monopartite positive-strand RNA genome, encoding five open-reading frames (ORFs), with a cap structure at the 5' end and a poly(A) tail at the 3' end. Besides PVX, Bamboo mosaic virus (BaMV) is another potexvirus that has received intensive attention due to the wealth of knowledge on the molecular biology of the virus. In this review, we discuss the enzymatic activities associated with each of the functional domains of the BaMV replication protein, a 155-kDa polypeptide encoded by ORF1. The unique cap formation mechanism, which may be conserved across the alphavirus superfamily, is particularly addressed. The recently identified interactions between the replication protein and the plant host factors are also described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...