Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(49): 17853-17861, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38031448

RESUMEN

Titanium and its alloys are protected by a compact and stable passive film, which confers resistance to corrosion by the primary halogen chloride (Cl-) while being less effective against fluoride (F-). Although researchers have recognized different macroscopic corrosion effects of these halide ions on titanium, the underlying mechanisms remain largely unexplored. In this work, the bonding of Cl-/F- with stable passive films was studied in neutral and acidic (pH = 2.3) conditions. The synergistic effect between the interfacial hydrogen bond (HB) structure and halogens on titanium corrosion was first revealed using first-principles calculation and Raman spectroscopy. F- forms more stable halogen-Ti bonds than Cl-, resulting in titanium degradation. The proton combined with F- exhibits a specific synergistic effect, causing corrosion of the passive film. The water hydrogen bond transformation index (HBTI) at the titanium/aqueous interface was 1.88 in an acidic solution containing F-, significantly higher than that in neutral/acid solutions containing Cl- (1.80/1.81) and a neutral solution containing F- (1.81). This work clarifies the structure-activity relationship between HBTI and the destruction of titanium passive films. We propose that the microstructure of the interfacial HB is an undeniable factor in the corrosion of titanium.

2.
J Colloid Interface Sci ; 643: 551-562, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36990868

RESUMEN

HYPOTHESIS: Unlike noble metals, the oxygen reduction reaction (ORR) behavior on Ti is more complicated due to its spontaneously formed oxide film. This film results in sluggish ORR kinetics and tends to be reduced within ORR potential region, causing the weak and multi-reaction coupled current. Though Ti is being used in chemical and biological fields, its ORR research is still underexplored. EXPERIMENTS: We innovatively employed the modified reactive tip generation-substrate collection (RTG/SC) mode of scanning electrochemical microscopy (SECM) with high efficiency of 97.2 % to quantitatively study the effects of film characteristics, solution environment (pH, anion, dissolved oxygen), and applied potential on the ORR activity and selectivity of Ti. Then, density functional theory (DFT) and molecular dynamics (MD) analyses were employed to elucidate its ORR behavior. FINDINGS: On highly reduced Ti, film properties dominate ORR behavior with promoted 4e- selectivity. Rapid film regeneration in alkaline/O2-saturated conditions inhibits ORR activity. Besides, ORR is sensitive to anion species in neutral solutions while showing enhanced 4e- reduction in alkaline media. All the improved 4e- selectivities originate from the hydrogen bond/electrostatic stabilization effect, while the decayed ORR activity by Cl- arises from the suppressed O2 adsorption. This work provides theoretical support and possible guidance for ORR research on oxide-covered metals.

3.
J Phys Chem B ; 126(44): 9016-9025, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36318969

RESUMEN

Ion adsorption and hydrogen bond (HB) network reconstruction in electric double layer (EDL) have a profound impact on the interface properties. The microstructure in the bulk phase of 1.00-21.30 wt.% Na2SO3 aqueous solutions are investigated by X-ray scattering, confocal Raman spectroscopy, and classical molecular dynamics. The electronic properties of SO32- adsorption and the geometric structure of the HB network in the EDL at the titanium TiO2(101) surface are studied by density functional theory (DFT) and classical molecular dynamics. The SO32- strongly weakens the fully hydrogen-bonded water (FHW) and transforms it into partial hydrogen-bonded water (PHW). The HB transformation index (HBTI = PHW/FHW) shows a linear relationship with the mass fraction of Na2SO3. The TiOb-parallel adsorption configuration of SO32- enhances the ionicity of the Ob-Ti6 bond, resulting in the formation of oxygen vacancies at the titanium passive film surface. Besides, SO32- and Na+ are enriched and thermodynamic supersaturated in the inner Helmholtz layer (IHL), and the ions are diluted in the outer Helmholtz layer (OHL). The diffusion coefficient of SO32- and water molecules in EDL decreases seriously, which is easy to causes salt scaling on the surface of titanium passive film. This work provides evidence for the destruction of titanium passive film by SO32-.

4.
Artículo en Inglés | MEDLINE | ID: mdl-22028733

RESUMEN

Introduction. Posttraumatic stress disorder (PTSD) is accompanied by poor general psychological status (GPS). In the present study, we investigated the effects of a Chinese herbal formula on GPS in earthquake survivors with PTSD. Methods. A randomized, double-blind, placebo-controlled trial compared a Chinese herbal formula, Xiao-Tan-Jie-Yu-Fang (XTJYF), to placebo in 2008 Sichuan earthquake survivors with PTSD. Patients were randomized into XTJYF (n = 123) and placebo (n = 122) groups. Baseline-to-end-point score changes in the three global indices of the Symptom Checklist-90-Revised (SCL-90-R) and rates of response in the SCL global severity index (GSI) were the primary endpoints. A subanalysis of the nine SCL factors and the sleep quality score were secondary endpoints. Results and Discussion. Compared to placebo, the XTJYF group was significantly improved in all three SCL global indices (P = 0.001~0.028). More patients in the XTJYF group reported "much improved" than the placebo group (P = 0.001). The XTJYF group performed significantly better than control in five out of nine SCL factors (somatization, obsessive-compulsive behavior, depression, anxiety, and hostility (P = 0.001~0.036)), and in sleep quality score (P < 0.001). XTJYF produced no serious adverse events. These findings suggest that XTJYF may be an effective and safe treatment option for improving GPS in patients with PTSD.

5.
Zhong Xi Yi Jie He Xue Bao ; 4(6): 556-9, 2006 Nov.
Artículo en Chino | MEDLINE | ID: mdl-17090366

RESUMEN

Radix Glycyrrhizae is a commonly used herbal drug for traditional Chinese medicine in China, and it is also an important material for drug, food, chemical industry, and dye industry. Furthermore, in Northwest China, Radix Glycyrrhizae acts as a key plant for preventing desertification, which currently is the most serious environmental problem in China. This report concentrated on discussing the great potential value of Glycyrrhiza on ecosystem, introducing the principles of protection and sustainable utilization of Glycyrrhiza resource, offering the suitable methods of utilization, and suggesting how to carry out the research on the substitute drugs. To protect the ecosystem and herbal resource of Radix Glycyrrhizae, we should use this herb in a more reasonable way.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Medicamentos Herbarios Chinos , Ecosistema , Glycyrrhiza/crecimiento & desarrollo , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA