Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Nat Med ; 78(3): 474-487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431911

RESUMEN

Lupus nephritis (LN) is a kidney disease that occurs after systemic lupus erythematosus (SLE) affects the kidneys. Pentraxin 3 (PTX3) is highly expressed in the serum of patients with LN. Renal PTX3 deposition is directly related to clinical symptoms such as proteinuria and inflammation. The excessive proliferation of mesangial cells (MCs) is one of the representative pathological changes in the progression of LN, which is closely related to its pathogenesis. Protopanaxadiol (PPD) is the main component of ginsenoside metabolism and has not been reported in LN. The aim of this study was to investigate the relationship between PTX3 and mesangial cell proliferation and to evaluate the potential role and mechanism of PPD in improving LN. PTX3 is highly expressed in the kidneys of LN patients and LN mice and is positively correlated with renal pathological indicators, including proteinuria and PCNA. The excessive expression of PTX3 facilitated the proliferation of MCs, facilitated the activation of the MAPK/ERK1/2 signaling pathway, and increased the expression of HIF-1α. Further studies showed that PPD can effectively inhibit the abnormal proliferation of MCs with high expression of PTX3 and significantly improve LN symptoms such as proteinuria in MRL/lpr mice. The mechanism may be related to the inhibition of the PTX3/MAPK/ERK1/2 pathway. In this study, both in vitro, in vivo, and clinical sample results show that PTX3 is involved in the regulation of MCs proliferation and the early occurrence of LN. Natural active compound PPD can improve LN by regulating the PTX3/MAPK/ERK1/2 pathway.


Asunto(s)
Proteína C-Reactiva , Nefritis Lúpica , Sistema de Señalización de MAP Quinasas , Sapogeninas , Componente Amiloide P Sérico , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/metabolismo , Animales , Sapogeninas/farmacología , Proteína C-Reactiva/metabolismo , Ratones , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Femenino , Componente Amiloide P Sérico/metabolismo , Proliferación Celular/efectos de los fármacos , Adulto , Masculino , Ratones Endogámicos MRL lpr , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología
3.
Scand J Immunol ; 98(2): e13275, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38441378

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic underlines a persistent threat of respiratory tract infectious diseases and warrants preparedness for a rapid response. At present, COVID-19 has had a serious social impact and imposed a heavy global burden on public health. The exact pathogenesis of COVID-19 has not been fully elucidated. Since the outbreak of COVID-19, a renewed attention has been brought to Toll-like receptors (TLRs). Available data and new findings have demonstrated that the interaction of human TLRs and SARS-CoV-2 is a vital mediator of COVID-19 immunopathogenesis. TLRs such as TLR2, 4, 7 and 8 are potentially important in viral combat and activation of immunity in patients with COVID-19. Therapeutics targeting TLRs are currently considered promising options against the pandemic. A number of TLR-targeting immunotherapeutics are now being investigated in preclinical studies and different phases of clinical trials. In addition, innovative vaccines based on TLRs under development could be a promising approach for building a new generation of vaccines to solve the current challenges. In this review, we summarize recent progress in the role of TLRs in COVID-19, focusing the new candidate drugs targeting TLRs, the current technology and potential paths forward for employing TLR agonists as vaccine adjuvants.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2 , Brotes de Enfermedades , Receptores Toll-Like
4.
BMC Pharmacol Toxicol ; 23(1): 83, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289546

RESUMEN

BACKGROUND: Toxicological problem associated with herbal medicine is a significant public health problem. Hence, it is necessary to elaborate on the safety of herbal medicine. Salvianolic acid A (SAA) is a major active compound isolated from Danshen, a popular herbal drug and medicinal food plant in China. The aim of the present study was to explore the toxicological profile of SAA. METHODS: The acute toxicity studies were performed in mice and Beagle dogs with single administration with SAA. A 4-week subchronic toxicity was test in dogs. SAA was intravenously administered at doses of 20, 80 and 300 mg/kg. Clinical observation, laboratory testing and necropsy and histopathological examination were performed. The genotoxic potential of SAA was evaluated by 2 types of genotoxicity tests: a reverse mutation test in bacteria and bone marrow micronucleus test in mice. RESULTS: In acute toxicities, the LD50 of SAA is 1161.2 mg/kg in mice. The minimum lethal dose (MLD) and maximal non-lethal dose (MNLD) of SAA were 682 mg/kg and 455 mg/kg in dogs, respectively. The approximate lethal dose range was 455-682 mg/kg. In the study of 4-week repeated-dose toxicity in dogs, focal necrosis in liver and renal tubular epithelial cell, the decrease in relative thymus weight, as well as abnormal changes in biochemical parameters, were observed in SAA 80 or 300 mg/kg group. The no observed adverse effect level (NOAEL) of SAA was 20 mg/kg. Thymus, liver and kidneys were the toxic targets. These toxic effects were transient and reversible. These results indicated that it should note examination of liver and kidney function during the administration of SAA in clinic. Furthermore, SAA had no mutagenic effect at any tested doses. CONCLUSION: These results provide new toxicological information of SAA for its clinical application and functional food consumption.


Asunto(s)
Ácidos Cafeicos , Lactatos , Ratones , Animales , Perros , Nivel sin Efectos Adversos Observados , Daño del ADN , Pruebas de Mutagenicidad
5.
Chemosphere ; 160: 323-31, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27393968

RESUMEN

The drinking water sources of many cities in southern China are frequently contaminated by upstream urban drainage during storm events, which brings high concentrations of N-nitrosamine (NA) precursors and poses a threat to the safety of drinking water. We conducted two sampling campaigns during the heavy rain season in 2015 in one representative city in southern China. We detected that the concentration of N-nitrosodimethylamine formation potential (NDMA FP) in urban drainage during two storm events was 80-115 ng/L and the total formation potential concentration of nine nitrosamines (TNA9 FP) was 145-165 ng/L. To address the deteriorated water quality, 30 mg/L of powdered activated carbon (PAC) was fed into the water intake. PAC adsorption alone could remove 52% of NDMA FP and 52% of TNA FP, while the subsequent conventional process only removed 8% of TNA FP. We isolated six chemicals (N,N-benzyldimethylamine, 5-[(dimethylamino)methyl]-2-furanmethanol, N,N-dimethyl-3-aminophenol, N,N-dimethylethylamine, Ziram, and N,N-dimethylaniline) and confirmed them to be NA precursors. Among these NA precursors, Ziram was identified for the first time as a NA precursor that is formed via chloramination; its molar yield for NDMA was 6.73 ± 0.40%.


Asunto(s)
Drenaje de Agua , Agua Potable/análisis , Nitrosaminas/análisis , Lluvia , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Compuestos de Anilina/análisis , Carbón Orgánico/química , China , Ciudades , Dimetilnitrosamina/análisis , Desinfección , Etilaminas/análisis , Calidad del Agua
6.
Integr Cancer Ther ; 15(3): 368-75, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26699805

RESUMEN

Objective Both the Chinese herbal compound Songyou Yin (SYY) and swimming exercise have been shown to have protective effects against liver cancer in animal models. In this study, we investigated whether SYY and moderate swimming (MS) have enhanced effect on suppressing progression of liver cancer by immunomodulation. Methods C57BL/6 mice were transplanted with Hepa1-6 murine liver cancer cell lines and received treatment with SYY alone or SYY combined with MS. The green fluorescent protein (GFP)-positive metastatic foci in lungs were imaged with a stereoscopic fluorescence microscope. Flow cytometry was used to test the proportion of CD4 +, CD8 + T cells in peripheral blood and the proportions of CD4 + CD25 + Foxp3 + Treg cells in peripheral blood, spleen, and tumor tissues. Cytokine transforming growth factor (TGF)-ß1 level in serum was detected by ELISA. Results SYY plus MS significantly suppressed the growth and lung metastasis of liver cancer and prolonged survival in tumor-burdened mice. SYY plus MS markedly raised the CD4 to CD8 ratio in peripheral blood and lowered the serum TGF-ß1 level and the proportions of Treg cells in peripheral blood, spleen, and tumor tissue. The effects of the combined intervention were significantly superior to SYY or MS alone. Conclusion The combined application of SYY and MS exerted an enhanced effect on suppressing growth and metastasis of liver cancer by strengthening immunity.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inmunología , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Natación/fisiología , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Citocinas/inmunología , Citocinas/metabolismo , Citometría de Flujo/métodos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta1/inmunología , Factor de Crecimiento Transformador beta1/metabolismo , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA