Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Ultrasound Med Biol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38702285

RESUMEN

OBJECTIVE: This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human. METHODS: To achieve this, a processing pipeline was developed which included a new type of rolling window image reconstruction, which integrated a row-column array specific coherence-based beamforming technique with acoustic sub-aperture processing. This and other processing steps reduced the 'secondary' lobe artefacts, and noise and increased the effective frame rate, thereby enabling ultrasound localisation images to be produced. RESULTS: Using an in vitro cross tube, it was found that the procedure reduced the percentage of 'false' locations from ∼26% to ∼15% compared to orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼7 dB and the effective frame rate was increased to over 4000 fps. In vivo, ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid. CONCLUSION: It has been demonstrated that the proposed methods using a row-column array can produce large field of view super-resolution microvascular images in vivo and in a human non-invasively.

2.
Nat Biomed Eng ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710839

RESUMEN

Myocardial microvasculature and haemodynamics are indicative of potential microvascular diseases for patients with symptoms of coronary heart disease in the absence of obstructive coronary arteries. However, imaging microvascular structure and flow within the myocardium is challenging owing to the small size of the vessels and the constant movement of the patient's heart. Here we show the feasibility of transthoracic ultrasound localization microscopy for imaging myocardial microvasculature and haemodynamics in explanted pig hearts and in patients in vivo. Through a customized data-acquisition and processing pipeline with a cardiac phased-array probe, we leveraged motion correction and tracking to reconstruct the dynamics of microcirculation. For four patients, two of whom had impaired myocardial function, we obtained super-resolution images of myocardial vascular structure and flow using data acquired within a breath hold. Myocardial ultrasound localization microscopy may facilitate the understanding of myocardial microcirculation and the management of patients with cardiac microvascular diseases.

3.
IEEE Trans Med Imaging ; PP2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607705

RESUMEN

With the widespread interest and uptake of super-resolution ultrasound (SRUS) through localization and tracking of microbubbles, also known as ultrasound localization microscopy (ULM), many localization and tracking algorithms have been developed. ULM can image many centimeters into tissue in-vivo and track microvascular flow non-invasively with sub-diffraction resolution. In a significant community effort, we organized a challenge, Ultrasound Localization and TRacking Algorithms for Super-Resolution (ULTRA-SR). The aims of this paper are threefold: to describe the challenge organization, data generation, and winning algorithms; to present the metrics and methods for evaluating challenge entrants; and to report results and findings of the evaluation. Realistic ultrasound datasets containing microvascular flow for different clinical ultrasound frequencies were simulated, using vascular flow physics, acoustic field simulation and nonlinear bubble dynamics simulation. Based on these datasets, 38 submissions from 24 research groups were evaluated against ground truth using an evaluation framework with six metrics, three for localization and three for tracking. In-vivo mouse brain and human lymph node data were also provided, and performance assessed by an expert panel. Winning algorithms are described and discussed. The publicly available data with ground truth and the defined metrics for both localization and tracking present a valuable resource for researchers to benchmark algorithms and software, identify optimized methods/software for their data, and provide insight into the current limits of the field. In conclusion, Ultra-SR challenge has provided benchmarking data and tools as well as direct comparison and insights for a number of the state-of-the art localization and tracking algorithms.

4.
J Med Chem ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669059

RESUMEN

Liver fibrosis is a common pathological feature of most chronic liver diseases with no effective drugs available. Phosphodiesterase 1 (PDE1), a subfamily of the PDE super enzyme, might work as a potent target for liver fibrosis by regulating the concentration of cAMP and cGMP. However, there are few PDE1 selective inhibitors, and none has been investigated for liver fibrosis treatment yet. Herein, compound AG-205/1186117 with the dihydropyrimidine scaffold was selected as the hit by virtual screening. A hit-to-lead structural modification led to a series of dihydropyrimidine derivatives. Lead 13h exhibited the IC50 of 10 nM against PDE1, high selectivity over other PDEs, as well as good safety properties. Administration of 13h exerted significant anti-liver fibrotic effects in bile duct ligation-induced fibrosis rats, which also prevented TGF-ß-induced myofibroblast differentiation in vitro, confirming that PDE1 could work as a potential target for liver fibrosis.

5.
Int J Endocrinol ; 2024: 3950894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571926

RESUMEN

Objective: To explore associations of combined exposure to metabolic/inflammatory indicators with thyroid nodules. Methods: We reviewed personal data for health screenings from 2020 to 2021. A propensity score matching method was used to match 931 adults recently diagnosed with thyroid nodules in a 1 : 4 ratio based on age and gender. Conditional logistic regression and Bayesian kernel machine regression (BKMR) were used to explore the associations of single metabolic/inflammatory indicators and the mixture with thyroid nodules, respectively. Results: In the adjusted models, five indicators (ORQ4 vs. Q1: 1.30, 95% CI: 1.07-1.58 for fasting blood glucose; ORQ4 vs. Q1: 1.30, 95% CI: 1.08-1.57 for systolic blood pressure; ORQ4 vs. Q1: 1.26, 95% CI: 1.04-1.53 for diastolic blood pressure; ORQ4 vs. Q1: 1.23, 95% CI: 1.02-1.48 for white blood cell; ORQ4 vs. Q1: 1.28, 95% CI: 1.07-1.55 for neutrophil) were positively associated with the risk of thyroid nodules, while high-density lipoproteins (ORQ3 vs. Q1: 0.75, 95% CI: 0.61-0.91) were negatively associated with the risk of thyroid nodules. Univariate exposure-response functions from BKMR models showed similar results. Moreover, the metabolic and inflammatory mixture exhibited a significant positive association with thyroid nodules in a dose-response pattern, with systolic blood pressure being the greatest contributor within the mixture (conditional posterior inclusion probability of 0.82). No interaction effects were found among the five indicators. These associations were more prominent in males, participants with higher age (≥40 years old), and individuals with abnormal body mass index status. Conclusions: Levels of the metabolic and inflammatory mixture have a linear dose-response relationship with the risk of developing thyroid nodules, with systolic blood pressure levels being the most important contributor.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38607709

RESUMEN

Ultrasound localization microscopy (ULM) overcomes the acoustic diffraction limit by localizing tiny microbubbles (MBs), thus enabling the microvascular to be rendered at sub-wavelength resolution. Nevertheless, to obtain such superior spatial resolution, it is necessary to spend tens of seconds gathering numerous ultrasound (US) frames to accumulate MB events required, resulting in ULM imaging still suffering from trade-offs between imaging quality, data acquisition time and data processing speed. In this paper, we present a new deep learning (DL) framework combining multi-branch CNN and recursive Transformer, termed as ULM-MbCNRT, that is capable of reconstructing a super-resolution image directly from a temporal mean low-resolution image generated by averaging much fewer raw US frames, i.e., implement an ultrafast ULM imaging. To evaluate the performance of ULM-MbCNRT, a series of numerical simulations and in vivo experiments are carried out. Numerical simulation results indicate that ULM-MbCNRT achieves high-quality ULM imaging with ~10-fold reduction in data acquisition time and ~130-fold reduction in computation time compared to the previous DL method (e.g., the modified sub-pixel convolutional neural network, ULM-mSPCN). For the in vivo experiments, when comparing to the ULM-mSPCN, ULM-MbCNRT allows ~37-fold reduction in data acquisition time (~0.8 s) and ~2134-fold reduction in computation time (~0.87 s) without sacrificing spatial resolution. It implies that ultrafast ULM imaging holds promise for observing rapid biological activity in vivo, potentially improving the diagnosis and monitoring of clinical conditions.

7.
Phys Med Biol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588678

RESUMEN

Super-Resolution Ultrasound (SRUS) through localising and tracking of Microbubbles (MBs) can achieve sub-wavelength resolution for imaging microvascular structure and flow dynamics in deep tissue in-vivo. The technique assumes that signals from individual MBs can be isolated and localised accurately, but this assumption starts to break down when the MB concentration increases and the signals from neighbouring MBs start to interfere. The aim of this study is to gain understanding of the effect of MB-MB distance on ultrasound images and their localisation. Ultrasound images of two MBs approaching each other were synthesised by simulating both ultrasound field propagation and nonlinear MB dynamics. Besides the distance between MBs, a range of other influencing factors including MB size, ultrasound frequency, transmit pulse sequence, pulse amplitude and localisation methods were studied. The results show that as two MBs approach each other, the interference fringes can lead to significant and oscillating localisation errors, which are affected by both the MB and imaging parameters. When modelling a clinical linear array probe operating at 6MHz, localisation errors between 20 to 30 µm (∼1/10th wavelength) can be generated when MBs are ∼ 500µm (2 wavelengths or ∼ 1.7 times the Point Spread Function (PSF)) away from each other. When modelling a cardiac probe operating at 1.5 MHz, the localisation errors were as high as 200 µm (∼1/5th wavelength) even when the MBs were more than 10 wavelengths apart (2.9 times the PSF). For both frequencies, at smaller separation distances, the two MBs were misinterpreted as one MB located in between the two true positions. Cross-correlation or Gaussian fitting methods were found to generate slightly smaller localisation errors than centroiding. In conclusion, caution should be taken when generating and interpreting SRUS images obtained using high agent concentration with MBs separated by less than 1.7 to 3 times the PSF, as significant localisation errors can be generated due to interference between neighbouring MBs.

8.
IEEE Trans Med Imaging ; PP2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578852

RESUMEN

High intensity focused ultrasound (HIFU) is a thriving non-invasive technique for thermal ablation of tumors, but significant challenges remain in its real-time monitoring with medical imaging. Ultrasound imaging is one of the main imaging modalities for monitoring HIFU surgery in organs other than the brain, mainly due to its good temporal resolution. However, strong acoustic interference from HIFU irradiation severely obscures the B-mode images and compromises the monitoring. To address this problem, we proposed a frequency-domain robust principal component analysis (FRPCA) method to separate the HIFU interference from the contaminated B-mode images. Ex-vivo and in-vivo experiments were conducted to validate the proposed method based on a clinical HIFU therapy system combined with an ultrasound imaging platform. The performance of the FRPCA method was compared with the conventional notch filtering method. Results demonstrated that the FRPCA method can effectively remove HIFU interference from the B-mode images, which allowed HIFU-induced grayscale changes at the focal region to be recovered. Compared to notch-filtered images, the FRPCA-processed images showed an 8.9% improvement in terms of the structural similarity (SSIM) index to the uncontaminated B-mode images. These findings demonstrate that the FRPCA method presents an effective signal processing framework to remove the strong HIFU acoustic interference, obtains better dynamic visualization in monitoring the HIFU irradiation process, and offers great potential to improve the efficacy and safety of HIFU treatment and other focused ultrasound related applications.

9.
J Hazard Mater ; 470: 134212, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583205

RESUMEN

Elevated levels of cadmium (Cd) have the ability to impede plant development. Aldo-keto reductases (AKRs) have been demonstrated in a number of plant species to improve tolerance to a variety of abiotic stresses by scavenging cytotoxic aldehydes; however, only a few AKRs have been identified to improve Cd tolerance. The OsAKR1 gene was extracted and identified from rice here. After being exposed to Cd, the expression of OsAKR1 dramatically rose in both roots and shoots, although more pronounced in roots. According to a subcellular localization experiment, the nucleus and cytoplasm are where OsAKR1 is primarily found. Mutants lacking OsAKR1 exhibited Cd sensitive phenotype than that of the wild-type (WT) Nipponbare (Nip), and osakr1 mutants exhibited reduced capacity to scavenge methylglyoxal (MG). Furthermore, osakr1 mutants exhibited considerably greater hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, and increased catalase (CAT) activity in comparison to Nip. The expression of three isomeric forms of CAT was found to be considerably elevated in osakr1 mutants during Cd stress, as demonstrated by quantitative real-time PCR analysis, when compared to Nip. These results imply that OsAKR1 controlled rice's ability to withstand Cd by scavenging harmful aldehydes and turning on the reactive oxygen species (ROS) scavenging mechanism.


Asunto(s)
Aldo-Ceto Reductasas , Cadmio , Oryza , Oryza/genética , Oryza/metabolismo , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Cadmio/toxicidad , Cadmio/metabolismo , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Aldehídos/metabolismo , Catalasa/metabolismo , Catalasa/genética , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Malondialdehído/metabolismo , Estrés Fisiológico , Piruvaldehído/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Inactivación Metabólica
10.
J Phys Chem Lett ; 15(10): 2904-2910, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38449075

RESUMEN

The distinctive electron deficiency and unusual multicenter bonding situations of boron give rise to fascinating chemical complexity and imaginative structural polymorphism. Herein, we employ an independently developed method to construct the new twinned γ*-boron based on the well-known hardest elemental boron, γ-B28. Notably, the newly propounded γ*-boron phases exhibit considerably close energy levels with γ-B28 under ambient conditions. The simulated X-ray diffraction patterns of stable twinned structure present excellent agreement with experimental data. First-principles calculations reveal a 7.5% increase in the ideal Vickers shear strength of γ*-boron compared to γ-B28, attributed to diverse bond responses within the twinned slabs. The evaluated hardness of nanotwinned γ*-B reaches 59 GPa in consideration of the size hardening effect. Our research presents an efficient strategy for constructing new polymorphs of boron with improved mechanical properties and expands the knowledge about twinning structures of boron.

11.
Sleep Med ; 115: 155-161, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367357

RESUMEN

BACKGROUND: Growing evidence supports the potential role of sleep in the motor progression of Parkinson's disease (PD). Slow-wave sleep (SWS) and rapid eye movement (REM) sleep without atonia (RWA) are important sleep parameters. The association between SWS and RWA with PD motor progression and their predictive value have not yet been elucidated. METHODS: We retro-prospectively analyzed clinical and polysomnographic data of 136 patients with PD. The motor symptoms were assessed using Unified Parkinson's Disease Rating Scale Part III (UPDRS III) at baseline and follow-up to determine its progression. Partial correlation analysis was used to explore the cross-sectional associations between slow-wave energy (SWE), RWA and clinical symptoms. Longitudinal analyses were performed using Cox regression and linear mixed-effects models. RESULTS: Among 136 PD participants, cross-sectional partial correlation analysis showed SWE decreased with the prolongation of the disease course (P = 0.046), RWA density was positively correlated with Hoehn & Yahr (H-Y) stage (tonic RWA, P < 0.001; phasic RWA, P = 0.002). Cox regression analysis confirmed that low SWE (HR = 1.739, 95% CI = 1.038-2.914; P = 0.036; FDR-P = 0.036) and high tonic RWA (HR = 0.575, 95% CI = 0.343-0.963; P = 0.032; FDR-P = 0.036) were predictors of motor symptom progression. Furthermore, we found that lower SWE predicted faster rate of axial motor progression (P < 0.001; FDR-P < 0.001) while higher tonic RWA density was associated with faster rate of rigidity progression (P = 0.006; FDR-P = 0.024) using linear mixed-effects models. CONCLUSIONS: These findings suggest that SWS and RWA might represent markers of different motor subtypes progression in PD.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sueño de Onda Lenta , Humanos , Enfermedad de Parkinson/complicaciones , Sueño REM , Trastorno de la Conducta del Sueño REM/diagnóstico , Trastorno de la Conducta del Sueño REM/complicaciones , Estudios Transversales , Polisomnografía , Hipotonía Muscular , Cafeína , Progresión de la Enfermedad
12.
Int J Behav Nutr Phys Act ; 21(1): 22, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409117

RESUMEN

BACKGROUND: Knowledge regarding the health impacts of daily eating frequency (DEF) and nighttime fasting duration (NFD) on mortality is very limited. OBJECTIVE: This study aimed to examine whether DEF and NFD are associated with CVD and all-cause mortality. METHODS: This was a prospective cohort study of a nationally representative sample from the United States, including 30,464 adults who participated in the National Health and Nutrition Examination Survey 2003-2014. Using 24-h dietary recall, DEF was assessed by the number of eating episodes, and NFD was calculated by the first and last eating time across a day. Death information was obtained from the National Death Index up to 2019. Weighted Cox proportional hazards regression models were used to assess survival relationships of DEF and NFD with mortality. RESULTS: During 307,686 person-years of follow-up, 4560 deaths occurred, including 1824 CVD cases. After adjustment for confounders, compared to DEF at 4-6 times, participants whose DEF was less than 3 times had greater CVD [hazard-ratio (HR) = 1.33, 95% confidence-interval (CI): 1.06-1.67] and all-cause (HR = 1.16, 95% CI: 1.01-1.33) mortality risks. Furthermore, compared to NFD of 10 to 11 h, participants whose NFD was shorter than 10 h had HRs of 1.30 (95% CI: 1.08-1.55) for CVD mortality and 1.23 (95% CI: 1.08-1.39) for all-cause mortality. NFD longer than 14 h was also related to CVD mortality (HR = 1.37, 95% CI: 1.12-1.67) and all-cause mortality (HR = 1.36, 95% CI: 1.19-1.54). Similar results for the association of NFD and DEF with heart-specific and stroke-specific mortality were observed. CONCLUSION: This study found that DEF less than 3 times and NFD shorter than 10 h or longer than 14 h were independently associated with greater cardiovascular and all-cause mortality.


Asunto(s)
Enfermedades Cardiovasculares , Carubicina/análogos & derivados , Adulto , Humanos , Estados Unidos/epidemiología , Encuestas Nutricionales , Estudios Prospectivos , Conducta Alimentaria , Ayuno
13.
Medicine (Baltimore) ; 103(7): e36645, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363906

RESUMEN

Chronic hepatitis B (CHB) infection affects approximately 90 million people in China, where there are profoundly unmet clinical and public health needs. This study evaluated patient demographics, disease progression, and treatment management using national administrative claims data. This retrospective, observational study used anonymized data from the China Health Insurance Research Association claims database (January 1-December 31, 2016); data that could not be validated, or from duplicate entries, were excluded. Patients were identified using the International Classification of Diseases, 10th Revision diagnostic code for CHB (B18.0 and B18.1), using keyword searches for "CHB or HBV" and free-text descriptions of CHB treatments including nucleos(t)ide analogues. Primary objectives included evaluation of: demographics and clinical characteristics of patients with CHB, overall and by presence or absence of cirrhosis and hospital tier; proportion of patients prescribed CHB treatment; and healthcare costs and utilization overall and by presence or absence of cirrhosis and hospital tier. Most identified patients with CHB were male, aged 25 to 65 years, resided in East China, and had employee health insurance. Cirrhosis was common (16.20%) and associated with male preponderance, older age, hepatitis C virus coinfection, and higher hospital care demands and costs. The most frequently visited hospitals were Tier III; patients visiting Tier III generally required more hospital care compared with those visiting Tier I/II hospitals. Only two-thirds of patients were prescribed antiviral therapy for CHB (most commonly nucleos(t)ide analogues). Results from this study highlight a substantial need to improve access to appropriate CHB treatment in China.


Asunto(s)
Antivirales , Hepatitis B Crónica , Humanos , Masculino , Femenino , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/epidemiología , Hepatitis B Crónica/complicaciones , Estudios Retrospectivos , Costos de la Atención en Salud , Cirrosis Hepática/complicaciones , Virus de la Hepatitis B
14.
IEEE Trans Biomed Eng ; 71(2): 484-493, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37610892

RESUMEN

OBJECTIVE: Non-invasive human machine interfaces (HMIs) have high potential in medical, entertainment, and industrial applications. Traditionally, surface electromyography (sEMG) has been used to track muscular activity and infer motor intention. Ultrasound (US) has received increasing attention as an alternative to sEMG-based HMIs. Here, we developed a portable US armband system with 24 channels and a multiple receiver approach, and compared it with existing sEMG- and US-based HMIs on movement intention decoding. METHODS: US and motion capture data was recorded while participants performed wrist and hand movements of four degrees of freedom (DoFs) and their combinations. A linear regression model was used to offline predict hand kinematics from the US (or sEMG, for comparison) features. The method was further validated in real-time for a 3-DoF target reaching task. RESULTS: In the offline analysis, the wearable US system achieved an average [Formula: see text] of 0.94 in the prediction of four DoFs of the wrist and hand while sEMG reached a performance of [Formula: see text]= 0.60. In online control, the participants achieved an average 93% completion rate of the targets. CONCLUSION: When tailored for HMIs, the proposed US A-mode system and processing pipeline can successfully regress hand kinematics both in offline and online settings with performances comparable or superior to previously published interfaces. SIGNIFICANCE: Wearable US technology may provide a new generation of HMIs that use muscular deformation to estimate limb movements. The wearable US system allowed for robust proportional and simultaneous control over multiple DoFs in both offline and online settings.


Asunto(s)
Dispositivos Electrónicos Vestibles , Muñeca , Humanos , Muñeca/diagnóstico por imagen , Fenómenos Biomecánicos , Mano/diagnóstico por imagen , Articulación de la Muñeca , Movimiento , Electromiografía/métodos
15.
Clin Hemorheol Microcirc ; 86(3): 285-302, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37355887

RESUMEN

Calcific aortic valve disease (CAVD) is featured by thickening and calcification of the aortic valve. Osteoblast differentiation is a crucial step in valve calcification. Long non-coding RNAs (LncRNAs) participate in the osteogenic differentiation of mesenchymal cells. However, the character of lncRNA FGD5 antisense RNA 1 (FGD5-AS1) in CAVD is uncertain. After collection of human aortic valve tissue samples, detection of FGD5-AS1, microRNA (miR)-497-5p and Baculovirus inhibitor 5 (BIRC5) was conducted. Valve mesenchymal cells were isolated from CAVD patients and induced to differentiate to osteoblasts, and transfected with FGD5-AS1, miR-497-5p and BIRC5 plasmids. Detection of the alkaline phosphatase activity was after osteogenic induction of human aortic valve interstitial cells (hAVICs); Detection of the degree of calcium nodules and osteoblast differentiation markers (RUNX2 and OPN) was conducted. After establishment of a mouse model of CAVD, detection of the thickness of aortic valve leaflets, and the degree of calcification of the valve leaflets, and evaluation of echocardiographic parameters were implemented. Experimental data manifested in CAVD patients, lncRNAFGD5-AS1 and BIRC5 were reduced, but miR-497-5p was elevated; Enhancing lncRNA FGD5-AS1 or repressing miR-497-5p mitigated CAVD by restraining osteogenic differentiation; LncRNA FGD5-AS1 sponged miR-497-5p to target BIRC5; Repressive BIRC5 turned around the therapeutic action of elevated FGD5-AS1 or depressed miR-497-5p on hAVICs; Enhancive FGD5-AS1 in vivo was available to reduce ApoE-/- mouse CAVD induced via high cholesterol diet. All in all, lncRNAFGD5-AS1 targets BIRC5 via miR-497-5p to alleviate CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , MicroARNs , ARN Largo no Codificante , Survivin , Animales , Humanos , Ratones , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/genética , Factores de Intercambio de Guanina Nucleótido/genética , MicroARNs/genética , Osteogénesis/genética , ARN Largo no Codificante/genética , Survivin/genética , Survivin/metabolismo
17.
Environ Int ; 183: 108358, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056095

RESUMEN

AIMS: Previous studies have related heat waves to morbidity and mortality of cardiovascular diseases; however, potential mechanisms remained limited. Our aims were to investigate the short-term effects of heat waves on a series of clinical/subclinical indicators associated with cardiovascular health. METHODS: Our study used 80,574 health examination records from the Health Management Center of Nanjing Zhongda Hospital during the warm seasons of 2019-2021, including 62,128 participants. A total of 11 recognized indicators of cardiovascular risk or injury were assessed. Air pollution and meteorological data were obtained from the Nanjing Ecological Environment Bureau and the China Meteorological Data Network, respectively. Heat waves were defined as a daily average temperature over the 95th percentile for three or more consecutive days from May to September. We used a combination of linear mixed effects models and distributed lag nonlinear models to assess the lagged effects of heat waves on clinical and subclinical cardiovascular indicators. Stratified analyses based on individuals' characteristics, including gender, age, body mass index (BMI), diabetes, and hypertension, were also performed. RESULTS: Heat waves were related to significant changes in most indicators, with the magnitude of effects generally peaking at a lag of 0 to 3 days. Moreover, the cumulative percentage changes over lag 0-7 days were -0.82 % to -2.55 % in blood pressure, 1.32 % in heart rate, 0.20 % to 2.66 % in systemic inflammation markers, 0.36 % in a blood viscosity parameter, 9.36 % in homocysteine, and 1.35 % to 3.25 % in injuring myocardial enzymes. Interestingly, females and males showed distinct susceptibilities in different indicators. Stronger effects were also found in participants aged 50 years or over, individuals with abnormal BMI status, and patients with diabetes. CONCLUSION: Short-term exposure to heat waves could significantly alter clinical/subclinical cardiovascular indicator profiles, including blood pressure changes, increased heart rate, acute systemic inflammation, elevated blood viscosity, and myocardial injury.


Asunto(s)
Contaminación del Aire , Diabetes Mellitus , Masculino , Adulto , Femenino , Humanos , Contaminación del Aire/análisis , Estaciones del Año , China , Inflamación
18.
Invest Radiol ; 59(5): 379-390, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37843819

RESUMEN

OBJECTIVE: The aim of this study is to demonstrate 3-dimensional (3D) acoustic wave sparsely activated localization microscopy (AWSALM) of microvascular flow in vivo using phase change contrast agents (PCCAs). MATERIALS AND METHODS: Three-dimensional AWSALM using acoustically activable PCCAs was evaluated on a crossed tube microflow phantom, the kidney of New Zealand White rabbits, and the brain of C57BL/6J mice through intact skull. A mixture of C 3 F 8 and C 4 F 10 low-boiling-point fluorocarbon gas was used to generate PCCAs with an appropriate activation pressure. A multiplexed 8-MHz matrix array connected to a 256-channel ultrasound research platform was used for transmitting activation and imaging ultrasound pulses and recording echoes. The in vitro and in vivo echo data were subsequently beamformed and processed using a set of customized algorithms for generating 3D super-resolution ultrasound images through localizing and tracking activated contrast agents. RESULTS: With 3D AWSALM, the acoustic activation of PCCAs can be controlled both spatially and temporally, enabling contrast on demand and capable of revealing 3D microvascular connectivity. The spatial resolution of the 3D AWSALM images measured using Fourier shell correlation is 64 µm, presenting a 9-time improvement compared with the point spread function and 1.5 times compared with half the wavelength. Compared with the microbubble-based approach, more signals were localized in the microvasculature at similar concentrations while retaining sparsity and longer tracks in larger vessels. Transcranial imaging was demonstrated as a proof of principle of PCCA activation in the mouse brain with 3D AWSALM. CONCLUSIONS: Three-dimensional AWSALM generates volumetric ultrasound super-resolution microvascular images in vivo with spatiotemporal selectivity and enhanced microvascular penetration.


Asunto(s)
Medios de Contraste , Microscopía , Ratones , Animales , Conejos , Ratones Endogámicos C57BL , Sonido , Acústica , Ultrasonografía/métodos , Microburbujas
19.
Artículo en Inglés | MEDLINE | ID: mdl-38109244

RESUMEN

Super-resolution ultrasound (SRUS) through localizing spatially isolated microbubbles (MBs) has been demonstrated to overcome the wave diffraction limit and reveal the microvascular structure and flow information at the microscopic scale. However, 3-D SRUS imaging remains a challenge due to the fabrication and computational complexity of 2-D matrix array probes. Inspired by X-ray radiography which can present information within a volume in a single projection image with much simpler hardware than X-ray computerized tomography (CT), this study investigates the feasibility of broad elevation projection super-resolution (BEP-SR) ultrasound using a 1-D unfocused linear array. Both simulation and in vitro experiments were conducted on 3-D microvessel phantoms. In vivo demonstration was done on the Rabbit kidney. Data from a 1-D linear array with and without an elevational focus were synthesized by summing up row signals acquired from a 2-D matrix array with and without delays. A full 3-D reconstruction was also generated as the reference, using the same data of the 2-D matrix array but without summing row signals. Results show that using an unfocused 1-D array probe, BEP-SR can capture significantly more information within a volume in both vascular structure and flow velocity than the conventional 1-D elevational-focused probe. Compared with the 2-D projection image of the full 3-D SRUS results using the 2-D array probe with the same aperture size, the 2-D projection SRUS image of BEP-SR has similar volume coverage, using 32 folds fewer independent elements. This study demonstrates BEP-SR's ability of high-resolution imaging of microvascular structures and flow velocity within a 3-D volume at significantly reduced costs. The proposed BEP method could significantly benefit the clinical translation of the SRUS imaging technique by making it more affordable and repeatable.


Asunto(s)
Microvasos , Tomografía Computarizada por Rayos X , Animales , Conejos , Ultrasonografía/métodos , Fantasmas de Imagen , Microvasos/diagnóstico por imagen , Microburbujas
20.
Front Mol Biosci ; 10: 1302680, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090671

RESUMEN

Ever since the resolution revolution in 2013, cryo-electron microscopy (cryo-EM) has become a powerful methodology in structural biology that is especially suited to study the structure of large flexible molecular complexes. Since then, the need of setting up state-of-the-art cryo-EM facilities around the world has increased tremendously. Access to high-end cryo-EM instrumentation is however expensive and requires expertise. The establishment of large cryo-EM centers worldwide, many of which provide academic users free access for both data collection and user training, has been possible with the support of government agencies across the globe. In addition, many universities, and private institutions like the Van Andel Institute (VAI) have made significant investments to establish their own cryo-EM core facilities, ensuring on-site access to their researchers. This paper aims to serve as a blueprint for establishing a new mid-sized cryo-EM facility, as it provides key information based on our experience at VAI and discusses strategies used to optimize routine operation towards high performance and efficiency for single-particle cryo-EM. Information regarding initial planning, selection of equipment as well as the development of IT solutions that were required to improve data collection and analysis are included. In addition, we present an account of the most common issues affecting operation as well as the needs for maintenance over a 6-year period, which can help interested parties to estimate the long-term costs of running this type of facility. Lastly, a brief discussion on the pros and cons of establishing the facility is also included.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...