Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(6): e16518, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292326

RESUMEN

Iridoid is a special class of monoterpenoids, whose basic skeleton is the acetal derivative of antinodilaldehyde with a bicyclic H-5/H-9ß, ß-cisfused cyclopentan pyran ring. They were often existed in Valerianaceae, Rubiaceae, Scrophulariaceae and Labiaceae family, and has various biological activities, such as anti-inflammatory, hypoglycemic, neuroprotection, and soon. In this review, iridoids from Patrinia (Valerianaceae family), and the active ones as well as their mechanisms in recent 20 years were summarized. Up to now, a total of 115 iridoids had been identified in Patrinia, among which 48 had extensive biological activities mainly presented in anti-inflammatory, anti-tumor and neuroprotective. And the mechanisms involved in MAPK, NF-κB and JNK signal pathways. The summary for iridoids and their activities will provide the evidence to exploit the iridoids in Patrinia.

2.
Water Sci Technol ; 83(4): 877-885, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33617494

RESUMEN

Attachment and separation of sulfate-reducing bacteria (SRB) biofilm on stainless steel (SS) in simulated cooling water with and without different sterilization treatments was investigated by calculation of surface energy, theoretical work of adhesion and analysis of Scanning Electron Microscope/Energy Dispersive Spectrometer. Two types of biocides, glutaraldehyde and Polyhexamethylene guanidine (PHMG), and electromagnetic treatment were used in this paper. The results show that PHMG had the best bactericidal performance, followed by glutaraldehyde, and electromagnetic treatment was the lowest one. The theoretical work of adhesion was used to quantitatively evaluate the adhesion of biofilm on the surface of the metal. Theoretical work of adhesion between biofilm and SS in simulated cooling water increased with time. The theoretical adhesion work and adhesive capacity of biofilm to SS surface increased after treating with glutaraldehyde while decreasing after treating with PHMG and electromagnetic field. As the theoretical adhesion work decreased, the biofilm was gradually removed from the stainless steel surface. On the contrary, the biofilm adhered more firmly. The results of SEM were also consistent with the calculation results of theoretical adhesion work. The results obtained indicated that electromagnetic treatment had the lowest effect in sterilization but the best in biofilm separation.


Asunto(s)
Desinfectantes , Acero Inoxidable , Adhesión Bacteriana , Biopelículas , Desinfección , Propiedades de Superficie
3.
J Nanosci Nanotechnol ; 18(12): 8321-8326, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30189954

RESUMEN

The surface states of brass in simulated cooling water (SCW) containing or free of sodium dodecyl benzene sulfonate (SDBS) and TiO2 nanofluid were analyzed by means of scanning electron microscope (SEM), energy spectrum analysis (EDS) and X-ray diffraction (XRD). The concentrations of Cu and Zn ions in the solution after brass immersion were analyzed using a plasma emission spectrometer. The relationship between the surface states and corrosion resistance of brass was investigated by electrochemical impedance spectroscopy (EIS). The results showed that the brass surface was mainly covered with zinc compound Zn5(OH)6(CO3)2 as corrosion product in SCW. In SCW containing SDBS, a large amount of SDBS was adsorbed on the brass surface. In TiO2 nanofluid, the brass surface was relatively bare and mainly contained cuprous oxide. There was no obvious adhesion of SDBS aggregates and no accumulation of zinc compound on brass surface in TiO2 nanofluid. TiO2 nanoparticles inhibit the adsorption of SDBS on brass surface. Solution analysis results showed that the concentrations of Cu and Zn ions in TiO2 nanofluid was obviously higher than that in SCW and SCW containing SDBS, indicating that most of corrosion products of brass dissolved into the nanofluid. The EIS results illustrated the brass electrode had a larger reaction resistance in SCW containing SDBS, indicating the good protective performance of the adsorbed SDBS film on brass surface. The reaction resistance of the brass electrode was the smallest in TiO2 nanofluid, which illustrated that TiO2 nanoparticles in solution promoted the corrosion of brass.

4.
J Nanosci Nanotechnol ; 18(12): 8327-8332, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30189955

RESUMEN

The influence of Al2O3 nanoparticles on corrosion inhibition of benzotriazole (BTA) in brass/ simulated water system was studied by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results show that BTA has good corrosion inhibition effect on brass. Al2O3 nanoparticles could reduce the corrosion inhibition performance of BTA. The higher the concentration of Al2O3 nanoparticles in simulated water, the lower corrosion inhibition performance of BTA. The isothermal adsorption of BTA on brass surface in simulated water and Al2O3 nanofluids was analyzed. The results indicated that the adsorption of BTA on brass surface followed the Langmuirs' adsorption isotherm, the adsorption Gibbs free energy ΔG was less than -40 kJ/mol, corresponding to chemical adsorption, in both simulated water and Al2O3 nanofluids. The -ΔG value of BTA on brass surface decreased in Al2O3 nanofluids, indicating the weakening of the BTA adsorption on the brass surface. Surface analysis of brass samples by optical microscope and X-ray diffraction confirmed the above results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...