Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Acta Haematol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781945

RESUMEN

INTRODUCTION: Congenital methemoglobinemia (RCM) caused by CYB5R3 deficiency due to the mutations in the reduced nicotinamide adenine dinucleotide (NADH) cytochrome b5 reductase (CYB5R) gene is an autosomal recessive inherited disease. Clinically, it can be divided into two types, namely red blood cell affected type (RCM I) and systemically affected type (RCM II). CASE PRESENTATION: A 5-year-old male patient was diagnosed with cyanosis for 5 years. Physical examination showed cyanosis in areas such as lips, fingers, and toes. Laboratory examination revealed low pulse oxygen saturation (81%) and increased blood methemoglobin (23.6%). Gene testing revealed the compound heterozygous mutations in the CYB5R3 gene, c.149G>A (p.Arg50Gln) and c.331A>G (p.Lys111Glu), respectively originating from his parents. By constructing 3D models of CYB5R3 wild-type and mutant types using SWISS-MODEL software, it was found that the mutation caused significant structural abnormalities in the CYB5R protein. The relationship between CYB5R3 gene mutation sites, amino acid change, enzyme activity, and methemoglobinemia types I and II were listed and analyzed. CONCLUSION: A case of congenital RCM type I caused by compound heterozygous mutations in the CYB5R3 gene was reported, with c.331A>G (p.Lys111Glu) being the newly reported mutation. The homozygosity or heterozygosity of CYB5R3 gene mutations that lead to premature termination, loss of exons, and change in amino acid properties in FAD or NADH binding domains, is positively correlated with the severity (from type I to type II) of methemoglobinemia.

2.
Cell Metab ; 36(1): 176-192.e10, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171332

RESUMEN

The efficacy of chimeric antigen receptor (CAR) T cell therapy is hampered by relapse in hematologic malignancies and by hyporesponsiveness in solid tumors. Long-lived memory CAR T cells are critical for improving tumor clearance and long-term protection. However, during rapid ex vivo expansion or in vivo tumor eradication, metabolic shifts and inhibitory signals lead to terminal differentiation and exhaustion of CAR T cells. Through a mitochondria-related compound screening, we find that the FDA-approved isocitrate dehydrogenase 2 (IDH2) inhibitor enasidenib enhances memory CAR T cell formation and sustains anti-leukemic cytotoxicity in vivo. Mechanistically, IDH2 impedes metabolic fitness of CAR T cells by restraining glucose utilization via the pentose phosphate pathway, which alleviates oxidative stress, particularly in nutrient-restricted conditions. In addition, IDH2 limits cytosolic acetyl-CoA levels to prevent histone acetylation that promotes memory cell formation. In combination with pharmacological IDH2 inhibition, CAR T cell therapy is demonstrated to have superior efficacy in a pre-clinical model.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Isocitrato Deshidrogenasa , Histonas/metabolismo , Acetilación , Linfocitos T , Neoplasias/metabolismo , Mitocondrias/metabolismo
3.
Chem Commun (Camb) ; 60(12): 1642-1645, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38235970

RESUMEN

The upgrading of lignin is a sustainable and promising pathway for fossil-based aromatic compounds but always faces low selectivity. Herein, a metal-free photocatalyst, 2,4,6-triphenylpyrylium tetrafluoroborate (TPP), was illustrated to remarkably facilitate the regioselective oxidative Cα-Cß bond cleavage of ß-1 and ß-O-4 lignin alcohol/ketone models into aromatic acids (92-99% yields) under visible-light irradiation at room temperature without any additive/co-catalyst, which was enabled by the synergistic effect of Cß-H⋯C(TPP) interaction and·Ë™O2-/1O2 species. The synergy of the catalyst-substrate interaction and active species offers a reference for the enhancive and selective transformation of polymeric biomass and complex molecules.

4.
Adv Healthc Mater ; 13(8): e2303000, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38063809

RESUMEN

Inducing cell migration from the edges to the center of a wound, promoting angiogenesis, and controlling bacterial infection are very important for diabetic wound healing. Incorporating growth factors and antibiotics into hydrogels for wound dressing is considered a potential strategy to meet these requirements. However, some present drawbacks greatly slow down their development toward application, such as the short half-life and high price of growth factors, low antibiotic efficiency against drug-resistant bacteria, insufficient ability of hydrogels to promote cell migration, etc. Deferoxamine (DFO) can upregulate the expression of HIF-1α, thus stimulating the secretion of angiogenesis-related endogenous growth factors. Copper sulfide (CuS) nanoparticles possess excellent antibacterial performance combined with photothermal therapy (PTT). Herein, DFO and CuS nanoparticles are incorporated into a biomimetic hydrogel, which mimics the structure and function of the extracellular matrix (ECM), abbreviated as DFO/CuS-ECMgel. This biomimetic hydrogel is expected to be able to promote cell adhesion and migration, be degraded by cell-secreted matrix metalloproteinases (MMPs), and then release DFO and CuS nanoparticles at the wound site to exert their therapeutic effects. As a result, the three crucial requirements for diabetic wound healing, "beneficial for cell adhesion and migration, promoting angiogenesis, effectively killing drug-resistant bacteria," can be achieved simultaneously.


Asunto(s)
Diabetes Mellitus , Nanopartículas , Humanos , Hidrogeles/química , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Cobre/química , Terapia Fototérmica , Biomimética , Nanopartículas/química , Diabetes Mellitus/tratamiento farmacológico , Antibacterianos/química
5.
Adv Sci (Weinh) ; 11(4): e2302325, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38059818

RESUMEN

Omega-6 fatty acids are the primary polyunsaturated fatty acids in most Western diets, while their role in diabetes remains controversial. Exposure of omega-6 fatty acids to an oxidative environment results in the generation of a highly reactive carbonyl species known as trans, trans-2,4-decadienal (tt-DDE). The timely and efficient detoxification of this metabolite, which has actions comparable to other reactive carbonyl species, such as 4-hydroxynonenal, acrolein, acetaldehyde, and methylglyoxal, is essential for disease prevention. However, the detoxification mechanism for tt-DDE remains elusive. In this study, the enzyme Aldh9a1b is identified as having a key role in the detoxification of tt-DDE. Loss of Aldh9a1b increased tt-DDE levels and resulted in an abnormal retinal vasculature and glucose intolerance in aldh9a1b-/- zebrafish. Transcriptomic and metabolomic analyses revealed that tt-DDE and aldh9a1b deficiency in larval and adult zebrafish induced insulin resistance and impaired glucose homeostasis. Moreover, alterations in hyaloid vasculature is induced by aldh9a1b knockout or by tt-DDE treatment can be rescued by the insulin receptor sensitizers metformin and rosiglitazone. Collectively, these results demonstrated that tt-DDE is the substrate of Aldh9a1b which causes microvascular damage and impaired glucose metabolism through insulin resistance.


Asunto(s)
Aldehídos , Resistencia a la Insulina , Insulina , Animales , Pez Cebra , Gluconeogénesis , Ácidos Grasos Omega-6
6.
Biomol Biomed ; 24(2): 423-433, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37715537

RESUMEN

High mortality and morbidity rates associated with ST-elevation myocardial infarction (STEMI) and post-STEMI heart failure (HF) necessitate proper risk stratification for coronary artery disease (CAD). A prediction model that combines specificity and convenience is highly required. This study aimed to design a monocyte-based gene assay for predicting STEMI and post-STEMI HF. A total of 1,956 monocyte expression profiles and corresponding clinical data were integrated from multiple sources. Meta-results were obtained through the weighted gene co-expression network analysis (WGCNA) and differential analysis to identify characteristic genes for STEMI. Machine learning models based on the decision tree (DT), support vector machine (SVM), and random forest (RF) algorithms were trained and validated. Five genes overlapped and were subjected to the model proposal. The discriminative performance of the DT model outperformed the other two methods. The established four-gene panel (HLA-J, CFP, STX11, and NFYC) could discriminate STEMI and HF with an area under the curve (AUC) of 0.86 or above. In the gene set enrichment analysis (GSEA), several cardiac pathogenesis pathways and cardiovascular disorder signatures showed statistically significant, concordant differences between subjects with high and low expression levels of the four-gene panel, affirming the validity of the established model. In conclusion, we have developed and validated a model that offers the hope for accurately predicting the risk of STEMI and HF, leading to optimal risk stratification and personalized management of CAD, thereby improving individual outcomes.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Insuficiencia Cardíaca , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/complicaciones , Enfermedad de la Arteria Coronaria/complicaciones , Insuficiencia Cardíaca/complicaciones , Enfermedades Cardiovasculares/complicaciones , Aprendizaje Automático
7.
Brain Res ; 1827: 148743, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159592

RESUMEN

By safeguarding the neurological system, insulin-like growth factor 1 (IGF-1) may have a role in the etiology of Alzheimer's disease (AD). The mechanism and signaling route, however, remain unclear. This research aimed to investigate the impact of IGF-1 on AD as well as its possible mechanism and signaling route. In this work, intracerebroventricular AAV9-IGF-1 was delivered to APP/PS1 transgenic mice. Following therapy, the Morris water maze and passive avoidance tests were administered to evaluate spatial learning and memory. The elevated plus maze, the open field test, and the sucrose preference test were used to evaluate anxious-depressive-like behavior. Thioflavin S staining was employed to visualize Aß deposition, and ELISA was used to determine the quantities of soluble Aß1-40 and Aß1-42. Transmission electron microscopy was used to view the mitochondrial structure and mitophagy vesicles. The protein expression levels of PINK1, Parkin, and LC3-II/LC3-I were finally determined by Western blotting. AAV9-IGF-1 therapy enhanced spatial learning and memory, relieved anxious-depressive-like behavior impairments, lowered amyloid-ß deposition, and decreased levels of soluble Aß1-40 and Aß1-42. In addition, AAV9-IGF-1 therapy restored mitochondrial integrity and increased the number of mitophagy in transgenic mice expressing APP/PS1. These results indicate that IGF-1 is protective for APP/PS1 mice. The mechanism of the favorable benefits mediated by IGF-1 was connected to an increase in mitophagy, which might give a novel therapy target in the future.


Asunto(s)
Enfermedad de Alzheimer , Mitofagia , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones Transgénicos , Regulación hacia Arriba , Modelos Animales de Enfermedad
8.
Plants (Basel) ; 12(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687280

RESUMEN

In the main agricultural area for waxy maize production in China, waterlogging occurs frequently during the waxy maize jointing stage, and this causes significant yield reduction. It is very important to understand the physiological mechanism of waterlogging stress in waxy maize during the jointing stage to develop strategies against waterlogging stress. Therefore, this study set waterlogging treatments in the field for 0, 2, 4, 6, 8, and 10 days during the waxy maize jointing stage, and were labelled CK, WS2, WS4, WS6, WS8 and WS10, respectively. By analyzing the effect of waterlogging on the source, sink, and transport of photoassimilates, the physiological mechanism of waterlogging stress in the jointing stage was clarified. The results show that PEPC and POD activities and Pro content decreased significantly under WS2 compared to CK. Except for these three indicators, the Pn, GS, leaf area, kernel number, yield, and puncture strength of stems were significantly decreased under the WS4. Under the WS6, the content of MDA began to increase significantly, while almost all other physiological indices decreased significantly. Moreover, the structure of stem epidermal cells and the vascular bundle were deformed after 6 days of waterlogging. Therefore, the threshold value of waterlogging stress occured at 4 to 6 days in the jointing stage of waxy maize. Moreover, waterlogging stress at the jointing stage mainly reduces the yield by reducing the number of kernels; specifically, the kernel number decreased by 6.7-15.5% in 4-10 days of waterlogging, resulting in a decrease of 9.9-20.2% in the final yield. Thus, we have shown that waterlogging stress at the jointing stage results in the decrease of potential waxy maize kernel numbers and yield when the synthesis of sources was limited and the transport of photoassimilates was restricted.

9.
J Reprod Immunol ; 159: 104135, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37633154

RESUMEN

Preeclampsia remains enigmatic and responsible for vast maternal and fetal morbidity and mortality worldwide. Our objective was to assess the strength of the effect of the 14 bp deletion/insertion polymorphism in exon 8 of the 3'UTR region of the human leukocyte antigen-G (HLA-G) gene on preeclampsia risk across different populations. A systematic review by a meta-analysis was performed to summarize the scattered epidemiologic evidence, which remains inconclusive and controversial. A systematic literature search according to the PRISMA guidelines was conducted to screen relevant publications. Odds ratio and corresponding 95% confidence interval were estimated to measure the magnitude of the association between this polymorphism and preeclampsia onset. Thirty studies comprising 9402 subjects were eligible. Pooled estimates suggested that both fetal and paternal insertion variants were significantly associated with increased odds of this disease. Nevertheless, the presence of the 14 bp insertion sequence in mothers does not seem to increase the risk of preeclampsia. Moreover, the results of subgroup analysis suggested that the fetal, maternal, and paternal polymorphism has a significant deleterious impact on the preeclampsia risk in the Asian population. In addition, the significant association between the paternal polymorphism and preeclampsia in primigravida was observed in the pooled estimation with a small sample size. By summarizing the amount of significant evidence, our study nominated this polymorphism as a potential biomarker for early risk stratification for Asians. Further large-scale validation is needed to establish fully solid and conclusive evidence for the impact of the insertion polymorphism on preeclampsia risk.


Asunto(s)
Asiático , Antígenos HLA-G , Preeclampsia , Femenino , Humanos , Embarazo , Regiones no Traducidas 3'/genética , Feto , Preeclampsia/epidemiología , Preeclampsia/genética , Antígenos HLA-G/genética
10.
Am J Transl Res ; 15(6): 4006-4019, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434818

RESUMEN

OBJECTIVES: Multiple transcription factors (TFs) have previously been shown to control hypertrophic chondrocyte-specific mouse type X collagen gene (Col10a1) expression via interaction with Col10a1 promoters. This study aims to investigate the role and mechanism of the potential binding factor signal transduction and transcription activator 5a (Stat5a) of Col10a1 cis-enhancer, in controlling Col10a1 gene expression and chondrocyte hypertrophic differentiation. METHODS: The potential Col10a1 regulator was predicted by the transcription factor affinity prediction (TRAP) analysis of the 150-bp Col10a1 cis enhancer. Stat5a was screened and verified by qRT-PCR, western blot and IHC analyses. Transfection of Stat5a siRNA or expression plasmid into MCT and ATDC5 cells was performed to either knockdown or over-express Stat5a and to investigate the influence of Stat5a on Col10a1 gene expression during the chondrocyte hypertrophy. Dual-luciferase reporter assay was performed to explore the mechanism of Stat5a affecting Col10a1 transcription. Alcian blue, alkaline phosphatase, and alizarin red staining, as well as qRT-PCR analyses of related marker genes were performed to investigate the effect and possible mechanism of Stat5a on chondrocyte differentiation. RESULTS: The potential binding factor of Col10a1 cis-enhancer Stat5a and Col10a1 were both highly expressed and positively correlated within hypertrophic chondrocytes in vitro and in situ. Knockdown of Stat5a reduced Col10a1 expression, while overexpression of Stat5a enhanced Col10a1 expression in hypertrophic chondrocytes, suggesting Stat5a as a positive Col10a1 regulator. Mechanistically, Stat5a was shown to potentiate the reporter activity mediated by Col10a1 promoter/enhancer. In addition, Stat5a increased the intensity of alkaline phosphatase staining of ATDC5 cells and the expression of relevant hypertrophic marker genes including Runx2, which was consistent with the expression of Stat5a and Col10a1. CONCLUSIONS: Our results support that Stat5a promoted Col10a1 expression and chondrocyte hypertrophic differentiation, possibly via interaction with the 150-bp Col10a1 cis-enhancer.

11.
Front Plant Sci ; 14: 1201966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457351

RESUMEN

Proper irrigation and fertilization measures can not only improve water and fertilizer utilization efficiency, but also have important significance in ensuring agricultural environment security and sustainable development. A field experiment was conducted to determine the optimal drip fertilization measure of winter wheat and explain its mechanism by analyzing the physiological and ecological characteristics and utilization efficiency of water and nitrogen under different irrigation and fertilization methods. The plants were treated with three irrigation and fertilization methods: the traditional irrigation and fertilization method (CK), surface drip fertilization (I1) and underground drip fertilization (I2). The results demonstrated that different irrigation methods had various effects on population and physiological characteristics of wheat. The plant height, leaf area and tiller number of I1 were significantly higher than those of CK during the whole growth period. I2 decreased plant height, leaf area and tiller number at jointing stage, but at flowering stage, the leaf area of I2 t was significantly higher than that of CK. Different irrigation methods also affected the root distribution of wheat. At flowering stage, I1 had lower root biomass than CK in all soil layers. The upper root system of I2 was smaller, but the deep root system was larger compared with the control. I1 and I2 had lower total root weight and higher shoot biomass compared to CK, so their root-shoot ratio decreased significantly. I1 and I2 increased and instantaneous water use efficiency (IWUE) by increasing the photosynthetic rate (Pn) and reducing transpiration rate (Tr) at the flowering stage, while I2 had a similar Pn to I1, but reduced Tr, resulting in a higher IWUE than I1. Both I1 and I2 also increased root efficiency, root activity, and Fv/Fm of wheat at the late growth stage, promoting accumulated dry matter after flowering (ADM) and pre-flowering dry matter remobilization (DMR), leading to a significant increase in grain yield. In addition, I1 and I2 had significantly higher water productivity (WP), irrigation water productivity (IWP), nitrogen partial productivity (NPP) and nitrogen agronomic efficiency (NAE) than CK, especially I2 had the highest IWP, WP, NPP and NAE. These findings highlight the potential benefits of drip fertilization in promoting sustainable wheat production and elucidate the mechanism by which it promotes efficient use of water and fertilizer.

12.
Front Immunol ; 14: 1125357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215107

RESUMEN

Background aims: B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor-T cell (CAR-T) therapy is used for refractory or relapsed multiple myeloma (r/r MM). However, CAR-T-related tumor lysis syndrome (TLS) has been observed. We aimed to elucidate the incidence, clinical and laboratory characteristics, and prognosis of CAR-T cell-related TLS. Methods: Patients (n=105) with r/r MM treated with BCMA-targeted CAR-T cell therapy were included. Patient characteristics, laboratory parameters, and clinical outcomes were assessed. Results: Eighteen (17.1%) patients developed TLS after BCMA-targeted CAR-T cell therapy. The median time till TLS onset was 8 days. Patients with TLS had steep rise in uric acid (UA), creatinine, and lactate dehydrogenase (LDH) within 6 days following CAR-T cell infusion and presented earlier and persistent escalation of cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-γ [IFN-γ], and ferritin levels). All 18 patients had cytokine release syndrome (CRS), of which 13 (72.2%) developed grade 3-4 CRS. Three of 18 patients (16.7%) developed immune effector cell-associated neurotoxicity syndrome (ICANS): two patients with grade 1 ICANS and one with grade 2 ICANS. TLS development had a negative effect on the objective response rate (77.8% in the TLS group vs. 95.4% in the non-TLS group, p<0.01). During the median follow-up of 15.1 months, the median PFS was poorer of patients with TLS (median: 3.4 months in the TLS group vs. 14.7 months in the non-TLS group, p<0.001, hazard ratio [HR]=3.5 [95% confidence interval [CI] 1.5-8.5]). Also, TLS development exhibited significant effects on OS (median: 5.0 months in the TLS group vs. 39.8 months in the non-TLS group, p<0.001, hazard ratio [HR]=3.7 [95% CI 1.3-10.3]). TLS was associated with a higher tumor burden, elevated baseline creatinine and UA levels, severe CRS, pronounced CAR-T cell expansion, and corticosteroid use. Conclusion: TLS is a frequently observed CAR-T therapy complication and negatively influences clinical response and prognosis. Close monitoring for TLS should be implemented during CAR-T cell therapy, especially for those at high TLS risk.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Síndrome de Lisis Tumoral , Humanos , Mieloma Múltiple/tratamiento farmacológico , Antígeno de Maduración de Linfocitos B , Síndrome de Lisis Tumoral/etiología , Síndrome de Lisis Tumoral/terapia , Incidencia , Creatinina , Pronóstico , Tratamiento Basado en Trasplante de Células y Tejidos
13.
Stem Cell Res Ther ; 14(1): 117, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37122014

RESUMEN

BACKGROUND: In vertebrates, hematopoietic stem and progenitor cells (HSPCs) emerge from hemogenic endothelium in the floor of the dorsal aorta and subsequently migrate to secondary niches where they expand and differentiate into committed lineages. Glia maturation factor γ (gmfg) is a key regulator of actin dynamics that was shown to be highly expressed in hematopoietic tissue. Our goal is to investigate the role and mechanism of gmfg in embryonic HSPC development. METHODS: In-depth bioinformatics analysis of our published RNA-seq data identified gmfg as a cogent candidate gene implicated in HSPC development. Loss and gain-of-function strategies were applied to study the biological function of gmfg. Whole-mount in situ hybridization, confocal microscopy, flow cytometry, and western blotting were used to evaluate changes in the number of various hematopoietic cells and expression levels of cell proliferation, cell apoptosis and hematopoietic-related markers. RNA-seq was performed to screen signaling pathways responsible for gmfg deficiency-induced defects in HSPC initiation. The effect of gmfg on YAP sublocalization was assessed in vitro by utilizing HUVEC cell line. RESULTS: We took advantage of zebrafish embryos to illustrate that loss of gmfg impaired HSPC initiation and maintenance. In gmfg-deficient embryos, the number of hemogenic endothelium and HSPCs was significantly reduced, with the accompanying decreased number of erythrocytes, myelocytes and lymphocytes. We found that blood flow modulates gmfg expression and gmfg overexpression could partially rescue the reduction of HSPCs in the absence of blood flow. Assays in zebrafish and HUVEC showed that gmfg deficiency suppressed the activity of YAP, a well-established blood flow mediator, by preventing its shuttling from cytoplasm to nucleus. During HSPC initiation, loss of gmfg resulted in Notch inactivation and the induction of Notch intracellular domain could partially restore the HSPC loss in gmfg-deficient embryos. CONCLUSIONS: We conclude that gmfg mediates blood flow-induced HSPC maintenance via regulation of YAP, and contributes to HSPC initiation through the modulation of Notch signaling. Our findings reveal a brand-new aspect of gmfg function and highlight a novel mechanism for embryonic HSPC development.


Asunto(s)
Factor de Maduración de la Glia , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Factor de Maduración de la Glia/genética , Factor de Maduración de la Glia/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas de Pez Cebra/genética
14.
Front Microbiol ; 14: 1099623, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960295

RESUMEN

Burkholderia contaminans, an emerging pathogen related to cystic fibrosis, is known to cause potentially fatal infections in humans and ruminants, especially in immunocompromised individuals. However, the immune responses in cows following its infection have not been fully elucidated. In this study, T- and B-lymphocytes-mediated immune responses were evaluated in 15 B. contaminans-induced mastitis cows and 15 healthy cows with multi-parameter flow cytometry. The results showed that infection with B. contaminans was associated with a significant decrease in the number and percentage of B lymphocytes but with a significant increase in the proportion of IgG+CD27+ B lymphocytes. This indicated that humoral immune response may not be adequate to fight intracellular infection, which could contribute to the persistent bacterial infection. In addition, B. contaminans infection induced significant increase of γδ T cells and double positive (DP) CD4+CD8+ T cells but not CD4+ or CD8+ (single positive) T cells in blood. Phenotypic analysis showed that the percentages of activated WC1+ γδ T cells in peripheral blood were increased in the B. contaminans infected cows. Interestingly, intracellular cytokine staining showed that cattle naturally infected with B. contaminans exhibited multifunctional TNF-α+IFN-γ+IL-2+ B. contaminans-specific DP T cells. Our results, for the first time, revealed a potential role of IgG+CD27+ B cells, CD4+CD8+ T cells and WC1+ γδ T cells in the defense of B. contaminans-induced mastitis in cows.

15.
J Leukoc Biol ; 113(4): 383-399, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36801950

RESUMEN

The immune component of the tumor microenvironment is essential for the regulation of cancer progression. In breast cancer (BC), a patient's tumor mass is frequently infiltrated by neutrophils (tumor-associated neutrophils, TANs). Our study addressed the role of TANs and their mechanism of action in BC. Using quantitative IHC, ROC, and Cox analysis, we demonstrated that a high density of TANs infiltrating the tumor parenchyma was predictive of poor prognosis and of decreased progression-free survival of patients with BC, who underwent surgical tumor removal without previous neoadjuvant chemotherapy, in 3 different cohorts: training, validation, and independent cohorts. Conditioned medium from human BC cell lines prolonged the lifespan of healthy donor neutrophils ex vivo. Neutrophils activated by the supernatants of BC lines demonstrated an increased ability to stimulate proliferation, migration, and invasive activity of BC cells. Cytokines involved in this process were identified using antibody arrays. The relationship between these cytokines and the density of TANs was validated by ELISA and IHC in fresh BC surgical samples. It was determined that tumor-derived G-CSF significantly extended the lifespan and increased the metastasis-promoting activities of neutrophils via the PI3K-AKT and NF-κB pathways. Simultaneously, TAN-derived RLN2 promoted the migratory abilities of MCF7 cells via PI3K-AKT-MMP-9. Analysis of tumor tissues from 20 patients with BC identified a positive correlation between the density of TANs and the activation of the G-CSF-RLN2-MMP-9 axis. Finally, our data demonstrated that TANs in human BC have detrimental effects, supporting malignant cell invasion and migration.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neutrófilos , Factor Estimulante de Colonias de Granulocitos/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
16.
Cytokine ; 164: 156164, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842371

RESUMEN

Various studies have investigated the risk of preeclampsia with the forkhead box protein P3 (FOXP3) gene rs2232365 and rs3761548 polymorphisms. However, the results remained contradictory. A comprehensive literature search was conducted using the Cochrane Library, PubMed, and Web of Science (up to Oct 11, 2021). Meta-analysis was carried out in the R language environment for statistical computing and graphics. A fixed-effect or random-effects model was used according to the statistical significance of heterogeneity among included studies. The pooled odds ratios and corresponding 95% confidence intervals were calculated to estimate the strength of the effect. For the rs2232365 polymorphism, statistical significance was detected neither in the overall population nor among the East Asian and West Asian subgroups. However, for rs3761548, the summarized statistics revealed a significant association between the C allele carriage and preeclampsia risk in the homozygote, heterozygote, and dominant models. The further stratified analysis found this effect might be specific to West-South Asian ethnic subgroups. To sum up, this meta-analysis showed that the FOXP3 rs3761548 polymorphism was significantly associated with preeclampsia susceptibility, and it had a deleterious effect especially in the West-South Asian population. In contrast, rs2232365 may serve as neither a protective nor a risk factor for preeclampsia onset.


Asunto(s)
Polimorfismo de Nucleótido Simple , Preeclampsia , Femenino , Humanos , Embarazo , Alelos , Estudios de Casos y Controles , Factores de Transcripción Forkhead/genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Polimorfismo de Nucleótido Simple/genética , Preeclampsia/genética , Factores de Riesgo
17.
Environ Sci Pollut Res Int ; 30(16): 46503-46526, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36717418

RESUMEN

Since 2020, governments around the world have implemented many types of public policies in response to the outbreak of COVID-19. These dramatic public policies have substantially changed production and consumption activities, thereby temporarily lowering electricity use and greenhouse gas emissions. This study argues that pandemic-induced public policies have unintentionally slowed the transition to renewable energy use in the EU since the decline in greenhouse gas emissions due to the lockdowns helped countries temporarily reduce their total emissions. We employ a fixed-effect model to investigate the effects of different types of COVID-19 public policy responses on electricity production, consumption, and net imports in 12 OECD countries in the EU, and we mainly focus on the share of electricity production from renewable energy sources. Among several public policy responses, stringent lockdown policies, such as workplace closures, stay-at-home requirements, and restrictions on gathering size, have negative and statistically significant impacts on electricity generation and consumption. Furthermore, countries with stringent lockdown policies are more likely to import electricity from other countries to mitigate the electricity shortages in their domestic markets. Importantly, we find that lockdown events have negative and statistically significant effects on the share of renewables in electricity production while increasing the share of fossil fuels in electricity production. In contrast, economic support policies such as income support, debt relief, and economic stimulus programs help reduce the share of fossil fuels in electricity production and decrease the net import of electricity from other countries. Our results indicate that the public policies implemented in response to the outbreak of COVID-19 have mixed effects on the transition to renewable energy sources in the EU, suggesting that the current decline in greenhouse gas emissions comes from the reduction in electricity use due to lockdown events instead of the adoption of renewable energy use and discouraging the transition to renewable energy sources.


Asunto(s)
COVID-19 , Gases de Efecto Invernadero , Humanos , Organización para la Cooperación y el Desarrollo Económico , Control de Enfermedades Transmisibles , Energía Renovable , Combustibles Fósiles , Política Pública , Electricidad , Dióxido de Carbono/análisis , Desarrollo Económico
18.
Dev Comp Immunol ; 139: 104567, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36228808

RESUMEN

The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) recognizes exogenous double-stranded DNA and produces 2'3'-cyclic GMP-AMP (2'3'-cGAMP), activating the stimulator of interferon genes (STING) and innate immunity. Bovine cGAS functions remain poorly understood. Herein, the coding sequence of the bo-cGAS gene was obtained and its recognition function was investigated. Bo-cGAS consists of 1542 nucleotides and the encoding acid sequence contained high sequence homology to that of other livestock. Bo-cGAS was localized in the endoplasmic reticulum and was abundant in the lung. Bo-cGAS and bo-STING coexistence significantly activated the IFN-ß promotor. Synthesized 2'3'-cGAMP activated the STING-dependent pathway. Upon bo-cGAS recognition of poly(dA:dT) and bovine herpesvirus type 1 (BHV-1), Viperin transcription displayed the opposite time-dependent trend. Significant restriction of IFN-ß transcription but augmentation of myxovirus resistance protein 1 (Mx1) and Viperin occurred during BHV-1 infection. Thus, bo-cGAS recognized exogenous double-stranded DNA and triggered the STING-dependent IFN-ß production pathway.


Asunto(s)
ADN , Interferón beta , Animales , Interferón beta/genética
19.
Clin Exp Med ; 23(1): 31-43, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35000022

RESUMEN

Multiple myeloma is a clonal B-lymphocyte tumor of terminally differentiated plasma cells. 18F-FDG PET/CT can provide valuable data for the diagnosis, restaging, and evaluate prognosis of multiple myeloma (MM). This meta-analysis aimed to evaluate the prognostic value of pre-treatment 18F-FDG PET/CT at diagnosis in MM patients. Related researches came from Embase, PubMed, and Cochrane Library databases through a systematic search, and the last one was updated on April 26, 2021. Cochran Q test and I-squared statistics were used to test for heterogeneity among the studies analyzed. The fixed model and random model were used to combine results when appropriate. Stata 12.0 was used to perform statistical analysis, and p < 0.05 was considered statistically significant. A total of 16 articles with 2589 patients were included in this study. Our results indicated PET/CT has an excellent prognostic role in MM, that higher SUVmax, more FL and EMD were associated with poor OS and PFS. SUVmax: OS (HR 1.89, 95% CI 1.47-2.44), PFS (HR 1.34, 95% CI 1.18-1.51); Fl: OS (HR 2.65, 95% CI 1.83-3.79), PFS (HR 1.61, 95% CI 1.40-1.86); EMD: OS (HR 2.11, 95% CI 1.41-3.16), PFS (HR 2.18, 95% CI 1.69-2.81). Furthermore, similar results were observed in most subgroup analyzes. Conclusion Pre-treatment 18F-FDG PET/CT examination has prognostic value for myeloma patients and has guiding significance for clinical treatment.


Asunto(s)
Fluorodesoxiglucosa F18 , Mieloma Múltiple , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Pronóstico , Mieloma Múltiple/diagnóstico por imagen , Radiofármacos , Tomografía de Emisión de Positrones
20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-994553

RESUMEN

Objective:To evaluate the long-term outcome of Viabahn stent graft in the treatment of complex femoropopliteal occlusive lesions.Methods:From Sep 2013 to Mar 2020, clinical data of TASC C and D femoropopliteal lesions treated with Viabahn were retrospectively analyzed. Patency rates, the freedom rate from clinically-driven target lesion revascularization (F-TLR), limb salvage and survival after five years were calculated.Results:A total of 65 patients (67 lower limbs) were included. 20 limbs were TASC C lesions, 47 limbs were TASC D lesions. The mean lesion length was (29.1±9.4) cm, including 48 chronic total occlusion (CTO) lesions (71.6%) with mean lesion length of (26.1±10.4) cm. Technique success rate was 98.6%. Mean length of stent graft was (31.3±10.1) cm.Major amputation was performed in 4.2% cases within 5 years. All-cause mortality in 5 years was 23.1%. Primary patency rates at 1,3,and 5 years were 76.8%,59.4%,50.9%, Assisted primary patency rates were 88.4%, 83.4%, 83.4% and secondary patency rates were 88.4%, 85.8%, and 85.8% . F-TLR at 1, 3 and 5 year was 88.2%,76.9%,73.1% .Conclusion:Viabahn for complex and long femoropopliteal artery occlusions is an acceptable treatment with fair long-term outcome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...