Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 596(7873): 525-530, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433941

RESUMEN

Lithium-ion batteries (LIBs) are widely used in applications ranging from electric vehicles to wearable devices. Before the invention of secondary LIBs, the primary lithium-thionyl chloride (Li-SOCl2) battery was developed in the 1970s using SOCl2 as the catholyte, lithium metal as the anode and amorphous carbon as the cathode1-7. This battery discharges by lithium oxidation and catholyte reduction to sulfur, sulfur dioxide and lithium chloride, is well known for its high energy density and is widely used in real-world applications; however, it has not been made rechargeable since its invention8-13. Here we show that with a highly microporous carbon positive electrode, a starting electrolyte composed of aluminium chloride in SOCl2 with fluoride-based additives, and either sodium or lithium as the negative electrode, we can produce a rechargeable Na/Cl2 or Li/Cl2 battery operating via redox between mainly Cl2/Cl- in the micropores of carbon and Na/Na+ or Li/Li+ redox on the sodium or lithium metal. The reversible Cl2/NaCl or Cl2/LiCl redox in the microporous carbon affords rechargeability at the positive electrode side and the thin alkali-fluoride-doped alkali-chloride solid electrolyte interface stabilizes the negative electrode, both are critical to secondary alkali-metal/Cl2 batteries.

2.
Proc Natl Acad Sci U S A ; 117(45): 27847-27853, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106405

RESUMEN

Potassium secondary batteries are contenders of next-generation energy storage devices owing to the much higher abundance of potassium than lithium. However, safety issues and poor cycle life of K metal battery have been key bottlenecks. Here we report an ionic liquid electrolyte comprising 1-ethyl-3-methylimidazolium chloride/AlCl3/KCl/potassium bis(fluorosulfonyl) imide for safe and high-performance batteries. The electrolyte is nonflammable and exhibits a high ionic conductivity of 13.1 mS cm-1 at room temperature. A 3.6-V battery with K anode and Prussian blue/reduced graphene oxide cathode delivers a high energy and power density of 381 and 1,350 W kg-1, respectively. The battery shows an excellent cycling stability over 820 cycles, retaining ∼89% of the original capacity with high Coulombic efficiencies of ∼99.9%. High cyclability is also achieved at elevated temperatures up to 60 °C. Uniquely, robust K, Al, F, and Cl-containing passivating interphases are afforded with this electrolyte, which is key to superior battery cycling performances.

3.
Nanoscale Res Lett ; 15(1): 130, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32542412

RESUMEN

α-Phase hematite photoelectrodes can split water. This material is nontoxic, inexpensive, and chemically stable; its low energy gap of 2.3 eV absorbs light with wavelengths lower than 550 nm, accounting for approximately 30% of solar energy. Previously, we reported polyhedral pseudocubic α-Fe2O3 nanocrystals using a facile hydrothermal route to increase spatial charge separation, enhancing the photocurrent of photocatalytic activity in the water-splitting process. Here, we propose a p-n junction structure in the photoanode of pseudocubic α-Fe2O3 to improve short carrier diffusion length, which limits its photocatalytic efficiency. We dope Zn on top of an Fe2O3 photoanode to form a layer of p-type semiconductor material; Sn is doped from the FTO substrate to form a layer of n-type semiconductor material. The p-n junction, n-type Fe2O3:Sn and p-type Fe2O3:Zn, increase light absorption and charge separation caused by the internal electric field in the p-n junction.

4.
J Am Chem Soc ; 142(16): 7276-7282, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32250611

RESUMEN

Electrocatalytic CO2 reduction (CO2RR) to valuable fuels is a promising approach to mitigate energy and environmental problems, but controlling the reaction pathways and products remains challenging. Here a novel Cu2O nanoparticle film was synthesized by square-wave (SW) electrochemical redox cycling of high-purity Cu foils. The cathode afforded up to 98% Faradaic efficiency for electroreduction of CO2 to nearly pure formate under ≥45 atm CO2 in bicarbonate catholytes. When this cathode was paired with a newly developed NiFe hydroxide carbonate anode in KOH/borate anolyte, the resulting two-electrode high-pressure electrolysis cell achieved high energy conversion efficiencies of up to 55.8% stably for long-term formate production. While the high-pressure conditions drastically increased the solubility of CO2 to enhance CO2 reduction and suppress hydrogen evolution, the (111)-oriented Cu2O film was found to be important to afford nearly 100% CO2 reduction to formate. The results have implications for CO2 reduction to a single liquid product with high energy conversion efficiency.

5.
Proc Natl Acad Sci U S A ; 116(48): 23915-23922, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31723041

RESUMEN

Electrochemical reduction of CO2 to useful chemicals has been actively pursued for closing the carbon cycle and preventing further deterioration of the environment/climate. Since CO2 reduction reaction (CO2RR) at a cathode is always paired with the oxygen evolution reaction (OER) at an anode, the overall efficiency of electrical energy to chemical fuel conversion must consider the large energy barrier and sluggish kinetics of OER, especially in widely used electrolytes, such as the pH-neutral CO2-saturated 0.5 M KHCO3 OER in such electrolytes mostly relies on noble metal (Ir- and Ru-based) electrocatalysts in the anode. Here, we discover that by anodizing a metallic Ni-Fe composite foam under a harsh condition (in a low-concentration 0.1 M KHCO3 solution at 85 °C under a high-current ∼250 mA/cm2), OER on the NiFe foam is accompanied by anodic etching, and the surface layer evolves into a nickel-iron hydroxide carbonate (NiFe-HC) material composed of porous, poorly crystalline flakes of flower-like NiFe layer-double hydroxide (LDH) intercalated with carbonate anions. The resulting NiFe-HC electrode in CO2-saturated 0.5 M KHCO3 exhibited OER activity superior to IrO2, with an overpotential of 450 and 590 mV to reach 10 and 250 mA/cm2, respectively, and high stability for >120 h without decay. We paired NiFe-HC with a CO2RR catalyst of cobalt phthalocyanine/carbon nanotube (CoPc/CNT) in a CO2 electrolyzer, achieving selective cathodic conversion of CO2 to CO with >97% Faradaic efficiency and simultaneous anodic water oxidation to O2 The device showed a low cell voltage of 2.13 V and high electricity-to-chemical fuel efficiency of 59% at a current density of 10 mA/cm2.

6.
Nat Commun ; 10(1): 3302, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341162

RESUMEN

Rechargeable sodium metal batteries with high energy density could be important to a wide range of energy applications in modern society. The pursuit of higher energy density should ideally come with high safety, a goal difficult for electrolytes based on organic solvents. Here we report a chloroaluminate ionic liquid electrolyte comprised of aluminium chloride/1-methyl-3-ethylimidazolium chloride/sodium chloride ionic liquid spiked with two important additives, ethylaluminum dichloride and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide. This leads to the first chloroaluminate based ionic liquid electrolyte for rechargeable sodium metal battery. The obtained batteries reached voltages up to ~ 4 V, high Coulombic efficiency up to 99.9%, and high energy and power density of ~ 420 Wh kg-1 and ~ 1766 W kg-1, respectively. The batteries retained over 90% of the original capacity after 700 cycles, suggesting an effective approach to sodium metal batteries with high energy/high power density, long cycle life and high safety.

7.
Proc Natl Acad Sci U S A ; 116(14): 6624-6629, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30886092

RESUMEN

Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. However, grid-scale freshwater electrolysis would put a heavy strain on vital water resources. Developing cheap electrocatalysts and electrodes that can sustain seawater splitting without chloride corrosion could address the water scarcity issue. Here we present a multilayer anode consisting of a nickel-iron hydroxide (NiFe) electrocatalyst layer uniformly coated on a nickel sulfide (NiSx) layer formed on porous Ni foam (NiFe/NiSx-Ni), affording superior catalytic activity and corrosion resistance in solar-driven alkaline seawater electrolysis operating at industrially required current densities (0.4 to 1 A/cm2) over 1,000 h. A continuous, highly oxygen evolution reaction-active NiFe electrocatalyst layer drawing anodic currents toward water oxidation and an in situ-generated polyatomic sulfate and carbonate-rich passivating layers formed in the anode are responsible for chloride repelling and superior corrosion resistance of the salty-water-splitting anode.

8.
Chem Commun (Camb) ; 54(83): 11689-11692, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30187037

RESUMEN

A new kind of composite zeolite catalyst containing multi-functional reactive-sites located in different nanopores with individual shape-selectivity was successfully applied to two complex one-pot (including both sequential and parallel) reactions. Every kind of reactant molecule was exactly catalyzed only for its desired reaction, thus the reactive pathways were effectively controlled.

9.
ACS Appl Mater Interfaces ; 8(32): 20802-13, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27458646

RESUMEN

Efficient bifunctional catalysts for electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable due to their wide applications in fuel cells and rechargeable metal air batteries. However, the development of nonprecious metal catalysts with comparable activities to noble metals is still challenging. Here we report a one-step wet-chemical synthesis of Ni-/Mn-promoted mesoporous cobalt oxides through an inverse micelle process. Various characterization techniques including powder X-ray diffraction (PXRD), N2 sorption, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) confirm the successful incorporation of Ni and Mn leading to the formation of Co-Ni(Mn)-O solid solutions with retained mesoporosity. Among these catalysts, cobalt oxide with 5% Ni doping demonstrates promising activities for both ORR and OER, with an overpotential of 399 mV for ORR (at -3 mA/cm(2)) and 381 mV (at 10 mA/cm(2)) for OER. Furthermore, it shows better durability than precious metals featuring little activity decay throughout 24 h continuous operation. Analyses of cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), Raman, and O2-temperature-programmed desorption (O2-TPD) reveal that redox activity of Co(3+) to Co(4+) is crucial for OER performance, while the population of surface oxygen vacancies and surface area determine ORR activities. The comprehensive investigation of the intrinsic active sites for ORR and OER by correlating different physicochemical properties to the electrochemical activities is believed to provide important insight toward the rational design of high-performance electrocatalysts for ORR and OER reactions.

10.
Sci Rep ; 6: 25860, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27167615

RESUMEN

The increasing demand of emerging technologies for high energy density electrochemical storage has led many researchers to look for alternative anode materials to graphite. The most promising conversion and alloying materials do not yet possess acceptable cycle life or rate capability. In this work, we use tin oxide, SnO2, as a representative anode material to explore the influence of graphene incorporation and In-doping to increase the electronic conductivity and concomitantly improve capacity retention and cycle life. It was found that the incorporation of In into SnO2 reduces the charge transfer resistance during cycling, prolonging life. It is also hypothesized that the increased conductivity allows the tin oxide conversion and alloying reactions to both be reversible, leading to very high capacity near 1200 mAh/g. Finally, the electrodes show excellent rate capability with a capacity of over 200 mAh/g at 10C.

11.
Molecules ; 20(1): 1319-56, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25594345

RESUMEN

Photocatalytic oxidation (PCO) air purification technology is reviewed based on the decades of research conducted by the United Technologies Research Center (UTRC) and their external colleagues. UTRC conducted basic research on the reaction rates of various volatile organic compounds (VOCs). The knowledge gained allowed validation of 1D and 3D prototype reactor models that guided further purifier development. Colleagues worldwide validated purifier prototypes in simulated realistic indoor environments. Prototype products were deployed in office environments both in the United States and France. As a result of these validation studies, it was discovered that both catalyst lifetime and byproduct formation are barriers to implementing this technology. Research is ongoing at the University of Connecticut that is applicable to extending catalyst lifetime, increasing catalyst efficiency and extending activation wavelength from the ultraviolet to the visible wavelengths. It is critical that catalyst lifetime is extended to realize cost effective implementation of PCO air purification.


Asunto(s)
Filtros de Aire , Procesos Fotoquímicos , Catálisis , Cinética , Modelos Teóricos , Temperatura , Rayos Ultravioleta , Compuestos Orgánicos Volátiles/análisis
12.
J Am Chem Soc ; 136(32): 11452-64, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25058174

RESUMEN

Manganese oxides of various structures (α-, ß-, and δ-MnO2 and amorphous) were synthesized by facile methods. The electrocatalytic properties of these materials were systematically investigated for catalyzing both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in alkaline media. Extensive characterization was correlated with the activity study by investigating the crystal structures (XRD, HRTEM), morphologies (SEM), porosities (BET), surfaces (XPS, O2-TPD/MS), and electrochemical properties (Tafel analysis, Koutechy-Levich plots, and constant-current electrolysis). These combined results show that the electrocatalytic activities are strongly dependent on the crystallographic structures, and follow an order of α-MnO2 > AMO > ß-MnO2 > δ-MnO2. Both OER studies and ORR studies reveal similar structure-determined activity trends in alkaline media. In the OER studies, α-MnO2 displays an overpotential of 490 mV compared to 380 mV shown by an Ir/C catalyst in reaching 10 mA cm(-2). Meanwhile, α-MnO2 also exhibits stability for 3 h when supplying a constant current density of 5 mA cm(-2). This was further improved by adding Ni(2+) dopants (ca. 8 h). The superior OER activity was attributed to several factors, including abundant di-µ-oxo bridges existing in α-MnO2 as the protonation sites, analogous to the OEC in PS-II of the natural water oxidation system; the mixed valencies (AOS = 3.7); and the lowest charge transfer resistances (91.8 Ω, η = 430 mV) as revealed from in situ electrochemical impedance spectroscopy (EIS). In the ORR studies, when reaching 3 mA cm(-2), α-MnO2 shows 760 mV close to 860 mV for the best ORR catalyst (20% Pt/C). The outstanding ORR activity was due to the strongest O2 adsorption capability of α-MnO2 suggested by temperature-programmed desorption. As a result, this discovery of the structure-related electrocatalytic activities could provide guidance in the further development of easily prepared, scalable, and low-cost catalysts based on metal oxides and their derivatives.

13.
Angew Chem Int Ed Engl ; 53(28): 7223-7, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24890371

RESUMEN

A series of large scale Mx Co3-x O4 (M=Co, Ni, Zn) nanoarray catalysts have been cost-effectively integrated onto large commercial cordierite monolithic substrates to greatly enhance the catalyst utilization efficiency. The monolithically integrated spinel nanoarrays exhibit tunable catalytic performance (as revealed by spectroscopy characterization and parallel first-principles calculations) toward low-temperature CO and CH4 oxidation by selective cation occupancy and concentration, which lead to controlled adsorption-desorption behavior and surface defect population. This provides a feasible approach for scalable fabrication and rational manipulation of metal oxide nanoarray catalysts applicable at low temperatures for various catalytic reactions.

14.
J Am Chem Soc ; 135(23): 8594-605, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23679582

RESUMEN

Manganese-containing MFI-type Mn-ZSM-5 zeolite was synthesized by a facile one-step hydrothermal method using tetrapropylammonium hydroxide (TPAOH) and manganese(III)-acetylacetonate as organic template and manganese salts, respectively. A highly crystalline MFI zeolite structure was formed under pH = 11 in 2 days, without the need for additional alkali metal cations. Direct evidence of the incorporation of Mn in the zeolite framework sites was observed by performing structure parameter refinements, supported by data collected from other characterization techniques such as IR, Raman, UV-vis, TGA, N2-adsorption, SEM, TEM, EDAX, and XPS. UV-vis spectra from the unique optical properties of Mn-ZSM-5 show two absorption peaks at 250 and 500 nm. The absorption varies in different atmospheres accompanied by a color change of the materials due to oxygen evolution. Raman spectra show a significant and gradual red shift from 383 cm(-1) to 372 cm(-1) when the doping amount of Mn is increased from 0 to 2 wt %. This suggests a weakened zeolite structural unit induced by the Mn substitution. The catalytic activity was studied in both gas-phase benzyl alcohol oxidation and toluene oxidation reactions with remarkable oxidative activity presented for the first time. These reactions result in a 55% yield of benzaldehyde, and 65% total conversion of toluene to carbon dioxide for the 2% Mn-ZSM-5. Temperature programmed reduction (TPR) using CO in He demonstrates two reduction peaks: one between 300 and 500 °C and the other between 500 and 800 °C. The first reduction peak, due to manganese-activated oxidation sites shifted from higher temperature to lower temperature, and the peak intensity of CO2 rises when the dopant amount increases. For the first time, calculated photophysical properties of a model Mn(O-SiH3)4(-) compound, an Mn-embedded zeolite cluster, and model Mn oxides help to explain and interpret the diffuse reflectance spectroscopy of Mn-ZSM-5 zeolites.


Asunto(s)
Hidrocarburos/química , Manganeso/química , Temperatura , Zeolitas/química , Catálisis , Estructura Molecular , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...