Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.984
Filtrar
1.
J Genet ; 1032024.
Artículo en Inglés | MEDLINE | ID: mdl-39223727

RESUMEN

Upregulation of homeoprotein SIX1 in gastric cancer (GC) is related to tumour proliferation and invasion. MicroRNA-7160 (miR-7160) is a homeoprotein SIX1-targeting miRNA that downregulates miR-7160, leading to cancer development. Total gastric cancer samples were collected from six patients, and relative expression levels of SIX1 mRNA and miRNAs were analysed by qRT-PCR. To evaluate the regulation of SIX1 by miR-7160, pGL3-SIX1-mut, pGL3-SIX1, and miR-7160 mimics transfected into cells using lipofectamine 2000. After transfection, proliferation and apoptosis in cultured cells were assessed using the nuclear TUNEL staining and CCK8 reagent, respectively. We demonstrated that the downregulation of miR-7160 in human gastric cancer cells is related to the upregulation of SIX1 mRNA. In gastric cancer cell lines, miR-7160 overexpression could downregulate the expression and inhibit cancer cell proliferation and growth in vitro. However, overexpression of miR-7160 did not increase gastric cancer cell apoptosis. In vitro downregulation of SIX1 decreased vimentin, N-cadherin, and other EMT-related gene expression and increased E-cadherin expression. In brief, miR-7160, by targeting SIX1, inhibits gastric cancer proliferation and cell growth in vitro, which provides an idea for introducing a new treatment option for gastric cancer.


Asunto(s)
Apoptosis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio , MicroARNs , Neoplasias Gástricas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Proliferación Celular/genética , Línea Celular Tumoral , Apoptosis/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Metástasis de la Neoplasia , Transición Epitelial-Mesenquimal/genética , Silenciador del Gen , Movimiento Celular/genética
2.
Heliyon ; 10(16): e35950, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224371

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is a recently identified infectious ailment triggered by a new strain of bunyavirus. It is distinguished by elevated fatality rates, ranging from 12 % to 30 %. The mechanism underlying the development of severe illness caused by SFTS bunyavirus (SFTSV) is not yet fully understood. To evaluate the role of the TLR2 receptor pathway in regulating Treg function in the progression of SFTS disease and possible mechanisms, sequential serum samples from 29 patients with SFTS (15 mild, 14 severe cases) were examined. Flow cytometry was employed to scrutinize the phenotypic and functional characteristics of TLR2 expression on circulating CD4 T cells, CD8 T cells, and Tregs. In all admitted patients, the evaluation of correlations between the frequencies of the aforementioned cells and SFTS index (SFTSI) was conducted. For SFTS, the levels of TLR2 on CD4 T cells and Tregs were significantly heightened when compared to those in healthy subjects. Additionally, the expression of TLR2 on Tregs exhibited a positive correlation with Ki-67 expression in Tregs and the severity of disease. Additionally, compared with those in uninfected controls, the expression levels of NF-κB in Tregs were significantly increased. Collectively, Tregs may be activated and proliferate through the stimulation of the TLR2/NF-кB pathway in reaction to SFTSV infection.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167454, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122224

RESUMEN

Increasing evidence indicated that neuroinflammation was involved in progression of Parkinson's disease (PD). Long noncoding RNAs (lncRNAs) played important roles in regulating inflammatory processes in multiple kinds of human diseases such as cancer diabetes, cardiomyopathy, and neurodegenerative disorders. The mechanisms by which lncRNAs regulated PD related inflammation and dopaminergic neuronal loss have not yet been fully elucidated. In current study, we intended to explore the function and potential mechanism of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in regulating inflammasome activation in PD. Functional assays confirmed that knockdown of KCNQ1OT1 suppress microglial NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and attenuated dopaminergic neuronal loss in PD model mice. As KCNQ1OT1 located in both cytoplasm and nucleus of microglia, we demonstrated that KCNQ1OT1 promoted microglial NLRP3 inflammasome activation by competitive binding with miR-186 in cytoplasm and inhibited pri-miR-186 mediated NLRP3 silencing through recruitment of DiGeorge syndrome critical region gene 8 (DGCR8) in nucleus, respectively. Our study found a novel lncRNA-pri-miRNA/mature miRNA-mRNA regulatory network in microglia mediated NLRP3 inflammasome activation and dopaminergic neuronal loss, provided further insights for the treatment of Parkinson's disease.

4.
Biomed Chromatogr ; : e5977, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162111

RESUMEN

Arisaema cum bile (known as Dan Nanxing in Chinese, DNX) is a herbal medicine used for treating febrile seizure (FS), which commonly prepared by using Arisaematis Rhizoma and animal bile. This study was designed to explore the optimal processing time of DNX and its potential mechanism on the anti-FS effect. A total of 17 volatile organic compounds (VOCs) were the characteristic ones to distinguish different fermentation stages of DNX by using gas chromatography-ion mobility spectrometry (GC-IMS), such as 2-heptanone monomer, and heptanal monomer. DNX with fermentation for 3 months had an obvious pattern of VOCs with others, which could be regarded as the optimal fermentation time. The Enterococcus and Staphylococcus might be the core bacteria on the production of VOCs. Additionally, DNX (2.8 g/kg, p.o.) reversed hot water bath-induced FSs of rats, as indicated by increased seizure latency and decreased seizure duration time. It also prevented hippocampal neuronal loss, increased GABAAR, and decreased GRIA1 expression. At the genus level, relative abundance of Enterococcus and Akkermansia were enriched after DNX treatment. These findings suggested that fermentation for 3 months might be the optimal process time for DNX, and DNX possess an anti-FS effect through regulating neurotransmitter disorder and gut microbiota.

5.
J Pain ; : 104645, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089662

RESUMEN

Chronic neuropathic pain has been one of the prominent causes of disability, and acupuncture has shown promise in treatment. The present study aimed to characterize acupuncture modulation of chronic neuropathic pain and explore the related functional brain changes. Sixty chronic sciatica patients were divided into acupuncture- or sham acupuncture groups and received 10 sessions of treatment during 4 weeks. The visual analog scale for leg pain, oswestry disability index (ODI), and resting-state functional magnetic resonance images were assessed at baseline and after treatment. Then, fractional amplitudes of low-frequency fluctuations (fALFF) and support vector regression analyses were performed. Compared with sham acupuncture, acupuncture significantly improved symptoms, including visual analog scale for leg pain and ODI. In addition, acupuncture exhibited increased fALFF of the right superior parietal lobule (SPL) and right postcentral gyrus. Furthermore, the actual 4-week ODI values were positively correlated with the support vector regression-predicted values based on the right SPL fALFF and baseline clinical measurements. These results indicate that the spontaneous neural activity of the right SPL and right postcentral gyrus may be involved in the modulation of acupuncture in chronic neuropathic pain. In addition, the spontaneous neural activity of the right SPL might be used as the predictor of response to acupuncture therapy. PERSPECTIVE: This clinical neuroimaging study elucidated the neural basis of acupuncture in chronic sciatica. Neurological indicators and clinical measurements could be used as potential predictors of acupuncture response. This study combines neuroimaging and artificial intelligence techniques to highlight the potential of acupuncture for the treatment of chronic neuropathic pain. TRIAL REGISTRATION NUMBER: Chinese Clinical Trial Registry, ChiCTR2100044585, http://www.chictr.org.cn.

6.
Front Psychol ; 15: 1415196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144599

RESUMEN

Objective: In competitive sports, understanding how the perfectionistic climate within teams influences the performance of elite female athletes can provide valuable insights for enhancing coaching practice and athletic achievement. Based on the cognitive appraisal theory of stress, this study constructs a dual-path model using stressors and coping strategies as mediators, referred to as the Perfectionistic Climate on Athletic Performance model (PCPM). The study explores the predictive role of the perfectionistic climate within sports teams on the athletic performance of elite female basketball players. Methods: The empirical study the relationships among the variables in the model using a sample of 125 core players from the top-level women's basketball teams in the 24th CUBAL24 tournament in 2022. A Structural Equation Modeling (SEM) analysis was conducted using AMOS 20.0, primarily employing the bias-corrected Bootstrap method to test the dual-path model. Results: The findings reveal double-edged paths towards a perfectionistic climate on athletic performance. In the positive pathway, a perfectionistic climate can positively predict athletic performance through challenge-related sources of stress and positive coping strategies. In the negative pathway, a perfectionistic climate can negatively predict athletic performance through threat-related sources of stress and negative coping strategies. Conclusion: Coaches need to pay attention to athletes' cognitive evaluations of the perfectionistic climate as a source of pressure. By setting challenging goals, coaches can guide athletes to view the perfectionistic climate of the sports team as a source of challenging pressure, thus unleashing their potential. Coaches should actively guide athletes in coping with the pressure brought about by the perfectionistic climate, enhancing their ability to handle stress. This will enable athletes to better adapt to the team's perfectionistic climate and further improve individual and team athletic performance.

7.
Heliyon ; 10(15): e34321, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39144947

RESUMEN

Ultraviolet B (UVB) light exposure accelerates skin photoaging. Human adipose-derived stem cell exosomes (hADSC-Exos) and some antioxidants may have anti-photoaging effects. However, it is unknown whether the combination of hADSC-Exos and antioxidants plays a synergistic role in anti-photoaging. In cellular and 3D skin models, we showed that vitamin E (VE) and hADSC-Exos were optimal anti-photoaging combinations. In vivo, VE and hADSC-Exos increased skin tightening and elasticity in UVB-induced photoaging mice Combined treatment with VE and hADSC-Exos inhibited SIRT1/NF-κB pathway. These findings contribute to the understanding of hADSC-Exos in conjunction with other antioxidants, thereby providing valuable insights for the future pharmaceutical and cosmetic industries.

8.
Heliyon ; 10(15): e34975, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39144956

RESUMEN

Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.

9.
World J Gastrointest Oncol ; 16(8): 3600-3623, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39171160

RESUMEN

BACKGROUND: Colorectal polyps, which are characterized by a high recurrence rate, represent preneoplastic conditions of the intestine. Due to unclear mechanisms of pathogenesis, first-line therapies for non-hereditary recurrent colorectal polyps are limited to endoscopic resection. Although recent studies suggest a mechanistic link between intestinal dysbiosis and polyps, the exact compositions and roles of bacteria in the mucosa around the lesions, rather than feces, remain unsettled. AIM: To clarify the composition and diversity of bacteria in the mucosa surrounding or 10 cm distal to recurrent intestinal polyps. METHODS: Mucosal samples were collected from four patients consistently with adenomatous polyps (Ade), seven consistently with non-Ade (Pol), ten with current Pol but previous Ade, and six healthy individuals, and bacterial patterns were evaluated by 16S rDNA sequencing. Linear discriminant analysis and Student's t-tests were used to identify the genus-level bacteria differences between groups with different colorectal polyp phenotypes. Pearson's correlation coefficients were used to evaluate the correlation between intestinal bacteria at the genus level and clinical indicators. RESULTS: The results confirmed a decreased level of probiotics and an enrichment of pathogenic bacteria in patients with all types of polyps compared to healthy individuals. These changes were not restricted to the mucosa within 0.5 cm adjacent to the polyps, but also existed in histologically normal tissue 10 cm distal from the lesions. Significant differences in bacterial diversity were observed in the mucosa from individuals with normal conditions, Pol, and Ade. Increased abundance of Gram-negative bacteria, including Klebsiella, Plesiomonas, and Cronobacter, was observed in Pol group and Ade group, suggesting that resistance to antibiotics may be one risk factor for bacterium-related harmful environment. Meanwhile, age and gender were linked to bacteria changes, indicating the potential involvement of sex hormones. CONCLUSION: These preliminary results support intestinal dysbiosis as an important risk factor for recurrent polyps, especially adenoma. Targeting specific pathogenic bacteria may attenuate the recurrence of polyps.

10.
Plant Physiol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172695

RESUMEN

The carboxysome is a natural proteinaceous organelle for carbon fixation in cyanobacteria and chemoautotrophs. It comprises hundreds of protein homologs that self-assemble to form a polyhedral shell structure to sequester cargo enzymes, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrases. How these protein components assemble to construct a functional carboxysome is a central question in not only understanding carboxysome structure and function but also synthetic engineering of carboxysomes for biotechnological applications. Here, we determined the structure of the chaperone protein CcmS, which has recently been identified to be involved in ß-carboxysome assembly, and its interactions with ß-carboxysome proteins. The crystal structure at 1.99 Å resolution reveals CcmS from Nostoc sp. PCC 7120 forms a homodimer, and each CcmS monomer consists of five α-helices and four ß-sheets. Biochemical assays indicate that CcmS specifically interacts with the C-terminal extension of the carboxysome shell protein CcmK1, but not the shell protein homolog CcmK2 or the carboxysome scaffolding protein CcmM. Moreover, we solved the structure of a stable complex of CcmS and the C-terminus of CcmK1 at 1.67 Å resolution and unveiled how the CcmS dimer interacts with the C-terminus of CcmK1. These findings allowed us to propose a model to illustrate CcmS-mediated ß-carboxysome assembly by interacting with CcmK1 at the outer shell surface. Collectively, our study provides detailed insights into the accessory factors that drive and regulate carboxysome assembly, thereby improving our knowledge of carboxysome structure, function, and bioengineering.

11.
Int J Biol Macromol ; 279(Pt 1): 134952, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197630

RESUMEN

The purified neutral polysaccharide fraction, namely SBP-1, was isolated and characterized from Schisandra chinensis (Turcz.) Baill crude polysaccharides, which have anti-Parkinson's disease activity were investigated in vivo and in vitro. Experiments have shown that the main chain of SBP-1 was Glcp-(1→, →4)-Glcp-(1→ and →4,6)-Glcp-(1→. We also revealed the effect of SBP-1 on the PD mice model and the potential underlying molecular mechanism. The results showed that SBP-1 administration improved behavioral deficits, increased tyrosine hydroxylase-positive cells, attenuated loss of dopaminergic neurons in MPTP-exposed mice, and reduced cell death induced by MPP+. The MCL-1 was identified as the target of SBP-1 by the combination of docking-SPR-ITC, WB, and IF experiments. Subsequently, the study showed that SBP-1 could target MCL-1 to enhance autophagy with a change in the apoptotic response, which was further demonstrated by a change in LC3/P62, PI3K/AKT/mTOR, and possesses a change in the expression of BCL2/BAX/Caspase3. These results demonstrate that SBP-1 may protect neurons against MPP+ or MPTP-induced damage in vitro and in vivo through enhancing autophagy. In summary, these findings indicate that SBP-1 and S. chinensis show potential as effective candidates for further investigation in the prevention and treatment of PD or associated illnesses, specifically through autophagy apoptotic-based mechanisms.

12.
Neuropharmacology ; : 110119, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197819

RESUMEN

Perioperative neurocognitive disorders (PND) are intractable, indistinct, and considerably diminish the postoperative quality of life of patients. It has been proved that Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was involved in neurodegenerative diseases by regulating mitochondrial biogenesis. The underlying mechanisms of PGC-1α and Nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in PND are not well understood. In this study, we constructed a model of laparotomy in aged mice, and then examined the cognition changes with novel object recognition tests and fear condition tests. The protein levels of PGC-1α and NLRP3 in the hippocampus were detect after surgery. Our results showed that NLRP3 and downstream PI3K/AKT pathway expressions were augmented in the hippocampus after surgery, whereas, the expressions of PGC-1α/estrogen-related receptor α (ERRα)/Unc-51-like autophagy activating kinase 1 (ULK1) pathway were diminished after surgery. In addition, we found that NLRP3 was mainly co-localized with neurons in the hippocampus, and synaptic-related proteins were reduced after surgery. At the same time, transmission electron microscopy (TEM) showed that mitochondria were impaired after surgery. Pharmacological treatment of MCC950, a selective NLRP3 inhibitor, effectively alleviated PND. Activation of PGC-1α with ZLN005 significantly ameliorated PND by enhancing the PGC-1α/ERRα/ULK1 signaling pathway, and further suppressing NLRP3 activation. As a result, we conclude that suppression of the PGC-1α/ERRα/ULK1 signaling pathway is the primary mechanism of PND which caused mitochondrial dysfunction, and activated NLRP3 inflammasome and downstream PI3K/AKT pathway, eventually improved cognitive dysfunction.

13.
CNS Neurosci Ther ; 30(9): e70012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39215404

RESUMEN

AIMS: Poly (ADP-ribose) polymerase (PARP) has been extensively investigated in human cancers. Recent studies verified that current available PARP inhibitors (Olaparib or Veliparib) provided clinical palliation of clinical patients suffering from paclitaxel-induced neuropathic pain (PINP). However, the underlying mechanism of PARP overactivation in the development of PINP remains to be investigated. METHODS AND RESULTS: We reported induction of DNA oxidative damage, PARP-1 overactivation, and subsequent nicotinamide adenine dinucleotide (NAD+) depletion as crucial events in the pathogenesis of PINP. Therefore, we developed an Olaparib PROTAC to achieve the efficient degradation of PARP. Continuous intrathecal injection of Olaparib PROTAC protected against PINP by inhibiting the activity of PARP-1 in rats. PARP-1, but not PARP-2, was shown to be a crucial enzyme in the development of PINP. Specific inhibition of PARP-1 enhanced mitochondrial redox metabolism partly by upregulating the expression and deacetylase activity of sirtuin-3 (SIRT3) in the dorsal root ganglions and spinal cord in the PINP rats. Moreover, an increase in the NAD+ level was found to be a crucial mechanism by which PARP-1 inhibition enhanced SIRT3 activity. CONCLUSION: The findings provide a novel insight into the mechanism of DNA oxidative damage in the development of PINP and implicate PARP-1 as a possible therapeutic target for clinical PINP treatment.


Asunto(s)
Daño del ADN , Mitocondrias , Neuralgia , Paclitaxel , Poli(ADP-Ribosa) Polimerasa-1 , Ratas Sprague-Dawley , Animales , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Masculino , Paclitaxel/toxicidad , Daño del ADN/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Piperazinas/farmacología , Ftalazinas/farmacología , NAD/metabolismo , Estrés Oxidativo/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Modelos Animales de Enfermedad
14.
J Food Prot ; 87(9): 100338, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103091

RESUMEN

Advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and polycyclic aromatic hydrocarbons (PAHs) are toxic substances that are produced in certain foods during thermal processing by using common high-temperature unit operations such as frying, baking, roasting, grill cooking, extrusion, among others. Understanding the formation pathways of these potential risk factors, which can cause cancer or contribute to the development of many chronic diseases in humans, is crucial for reducing their occurrence in thermally processed foods. During thermal processing, food rich in carbohydrates, proteins, and lipids undergoes a crucial Maillard reaction, leading to the production of highly active carbonyl compounds. These compounds then react with other substances to form harmful substances, which ultimately affect negatively the health of the human body. Although these toxic compounds differ in various forms of formation, they all partake in the common Maillard pathway. This review primarily summarizes the occurrence, formation pathways, and reduction measures of common toxic compounds during the thermal processing of food, based on independent studies for each specific contaminant in its corresponding food matrix. Finally, it provides several approaches for the simultaneous reduction of multiple toxic compounds.


Asunto(s)
Acrilamida , Contaminación de Alimentos , Manipulación de Alimentos , Productos Finales de Glicación Avanzada , Calor , Reacción de Maillard , Humanos , Contaminación de Alimentos/análisis , Furaldehído/análogos & derivados , Hidrocarburos Policíclicos Aromáticos , Culinaria
15.
Plant Biotechnol J ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180170

RESUMEN

Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.

16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1230-1237, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39192425

RESUMEN

OBJECTIVE: To understand the etiology, clinical characteristics and prognosis of secondary hemophagocytic syndrome (HLH), so as to improve the understanding of HLH and reduce the rates of misdiagnosis and missed diagnosis of HLH. METHODS: A retrospective study was conducted to analyze the cause, clinical characteristics, laboratory findings, therapy and outcomes of 75 adult patients with secondary HLH admitted to our hospital from January 2015 to December 2021. Follow-up continued until the last discharge time. RESULTS: Among 75 patients, infection-related HLH was the most common (45.33%), followed by lymphoma-related HLH (17.33%). Fever was the most common clinical manifestation (97.67%). Laboratory indicators such as NK cell activity (98.31% low or absent), sCD25 (93.22% increased), and serum ferritin (94.44% elevated) had higher sensitivity in diagnosis. By comparing the clinical manifestations and laboratory indicators of HLH patients with different causes, sex, lymph node enlargement and bone marrow morphology were more valuable for the diagnosis of primary disease (all P <0.05). By comparing the treatment and clinical outcomes of HLH patients with different causes, the highest clinical remission rate (83.3%) was achieved in patients with autoimmune disease-related HLH treated with hormone+cyclosporine (P <0.05). The overall 12-month survival rate of all patients was 26.7%, in which the infection-related HLH was the lowest (14.7%) while autoimmune disease-related HLH was the highest (63.6%). CONCLUSION: The causes and clinical characteristics of adult secondary HLH are varied, with poor prognosis and heterogeneity in disease severity. It is important to identify HLH cause early for diagnosis and needed to further understand HLH.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/etiología , Pronóstico , Estudios Retrospectivos , Masculino , Femenino , Adulto , Linfoma/complicaciones , Linfoma/diagnóstico
17.
J Agric Food Chem ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190823

RESUMEN

Dendrobium nobile is a species of the genus Dendrobium that can be used as both a medicinal herb and healthy food. The sesquiterpenes in D. nobile have attracted extensive attention in recent years. In this study, Amide × RP offline two-dimensional chromatography separation tandem high-resolution mass spectrometry combined with GNPS (Global Natural Product Social Molecular Networking) was developed for the characterization of sesquiterpenes in D. nobile. After first-dimensional amide separation, the 70% ethanol extract of D. nobile was divided into 40 fractions, which were analyzed by second-dimensional reverse-phase system separation and LTQ-Orbitrap detection. The raw data was imported into the GNPS, resulting in the efficient clustering of similar substances. Finally, 594 sesquiterpene compounds were characterized, and 25 compounds were isolated based on molecular network analysis, including six new compounds. In vitro bioassays, the isolated compounds decreased NO production in the LPS-induced microglial BV-2 cell model and the content of MDA in PC12 cells, demonstrating neuroprotective activity. These findings unraveled the underlying material and provided valuable insights into the quality control of D. nobile.

18.
Zhonghua Nan Ke Xue ; 30(3): 224-228, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-39177388

RESUMEN

OBJECTIVE: To study the effect of a modified behavioral treatment (MBT) on functional anejaculation and analyze the factors influencing the therapeutic efficacy. METHODS: We enrolled in this study 59 men aged 24-45 years visiting the Andrology Clinic of Shanghai First Maternity and Infant Hospital from August 2019 to May 2021 and complaining of aejaculation in sexual intercourse but normally ejaculating during masturbation. Thirty-nine of the patients underwent conventional behavioral treatment (the CBT group) and the other 20 received MBT, namely, changing the masturbation method combined with audiovisual stimulation during sexual intercourse (the MBT group). We compared the therapeutic effects between the two groups of patients, and analyzed the correlation of the outcomes of MBT with age, abstinence duration, use of audiovisual stimulation, change of the sexual position, mean bilateral testis volume and sex hormone levels. RESULTS: After treatment, 22 (37.29%) of the patients achieved successful ejaculation at least once in sexual intercourse, 11 (55.00%) in the MBT group, and the other 11 (28.21) in the CBT group, with a significantly higher effectiveness rate in the former than in the latter (P<0.05). The effectiveness rate was significantly correlated to the method of standing-position masturbation plus sexual intercourse and reduction in the frequency of masturbation among various strategies of behavioral treatment (P<0.05). CONCLUSION: MBT has a certain effect on functional anejaculation, and targeting the previous events of the patient is the key to the therapeutic efficacy. Further exploration of more effective strategies of behavioral treatment will become the trend of development in the management of functional anejaculation.


Asunto(s)
Eyaculación , Masturbación , Humanos , Masculino , Adulto , Persona de Mediana Edad , Terapia Conductista/métodos , Coito , Resultado del Tratamiento , Adulto Joven , Disfunciones Sexuales Fisiológicas/terapia , Disfunción Eyaculatoria
19.
Biosens Bioelectron ; 264: 116661, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142229

RESUMEN

As a foodborne pathogen capable of causing severe illnesses, early detection of Escherichia coli O157:H7 (E. coli O157:H7) is crucial for ensuring food safety. While Förster resonance energy transfer (FRET) is an efficient and precise detection technique, there remains a need for amplification strategies to detect low concentrations of E. coli O157:H7. In this study, we presented a phage (M13)-induced "one to many" FRET platform for sensitively detecting E. coli O157:H7. The aptamers, which specifically recognize E. coli O157:H7 were attached to magnetic beads as capture probes for separating E. coli O157:H7 from food samples. The peptide O157S, which specifically targets E. coli O157:H7, and streptavidin binding peptide (SBP), which binds to streptavidin (SA), were displayed on the P3 and P8 proteins of M13, respectively, to construct the O157S-M13K07-SBP phage as a detection probe for signal output. Due to the precise distance (≈3.2 nm) between two neighboring N-terminus of P8 protein, the SA-labeled FRET donor and acceptor can be fixed at the Förster distance on the surface of O157S-M13K07-SBP via the binding of SA and SBP, inducing FRET. Moreover, the P8 protein, with ≈2700 copies, enabled multiple FRET (≈605) occurrences, amplifying FRET in each E. coli O157:H7 recognition event. The O157S-M13K07-SBP-based FRET sensor can detect E. coli O157:H7 at concentration as low as 6 CFU/mL and demonstrates excellent performance in terms of selectivity, detection time (≈3 h), accuracy, precision, practical application, and storage stability. In summary, we have developed a powerful tool for detecting various targets in food safety, environmental monitoring, and medical diagnosis.


Asunto(s)
Técnicas Biosensibles , Escherichia coli O157 , Transferencia Resonante de Energía de Fluorescencia , Microbiología de Alimentos , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/virología , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas Biosensibles/métodos , Bacteriófago M13/química , Humanos , Estreptavidina/química , Límite de Detección , Contaminación de Alimentos/análisis , Aptámeros de Nucleótidos/química , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/diagnóstico
20.
Ecotoxicol Environ Saf ; 283: 116802, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106567

RESUMEN

Infertility is a global health problem affecting millions of people of reproductive age worldwide, with approximately half caused by males. Chitosan oligosaccharide (COS) has strong antioxidant capacity, but its impact on the male reproductive system has not been effectively evaluated. To address this, we integrated RNA-seq, serum metabolomics and intestinal 16 S rDNA analysis to conduct a comprehensive investigation on the male reproductive system. The results showed that COS has potential targets for the treatment of oligospermia, which can promote the expression of meiotic proteins DDX4, DAZL and SYCP1, benefit germ cell proliferation and testicular development, enhance antioxidant capacity, and increase the expression of testicular steroid proteins STAR and CYP11A1. At the same time, COS can activate PI3K-Akt signaling pathway in testis and TM3 cells. Microbiome and metabolomics analysis suggested that COS alters gut microbial community composition and cooperates with serum metabolites to regulate spermatogenesis. Therefore, COS promotes male reproduction by regulating intestinal microorganisms and serum metabolism, activating PI3K-Akt signaling pathway, improving testicular antioxidant capacity and steroid regulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA