Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 280(8): 6850-60, 2005 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-15537651

RESUMEN

In Crithidia fasciculata the biosynthesis of trypanothione (N(1),N(8)-bis(glutathionyl)spermidine; reduced trypanothione), a redox mediator unique to and essential for pathogenic trypanosomatids, was assumed to be achieved by two distinct enzymes, glutathionylspermidine synthetase and trypanothione synthetase (TryS), and only the first one was adequately characterized. We here report that the TryS of C. fasciculata, like that of Trypanosoma species, catalyzes the entire synthesis of trypanothione, whereas its glutathionylspermidine synthetase appears to be specialized for Gsp synthesis. A gene (GenBanktrade mark accession number AY603101) implicated in reduced trypanothione synthesis of C. fasciculata was isolated from genomic DNA and expressed in Escherichia coli as His-tagged or Nus fusion proteins. The expression product proved to be a trypanothione synthetase (Cf-TryS) that also displayed a glutathionylspermidine synthetase, an amidase, and marginal ATPase activity. The dual specificity of the Cf-TryS preparations was not altered by removal of the tags. Steady-state kinetic analysis of Cf-TryS yielded a pattern that was compatible with a concerted substitution mechanism, wherein the enzyme forms a ternary complex with Mg(2+)-ATP and GSH to phosphorylate GSH and then ligates the glutathionyl residue to glutathionylspermidine. Limiting K(m) values for GSH, Mg(2+)-ATP, and glutathionylspermidine were 407, 222, and 480 microm, respectively, and the k(cat) was 8.7 s(-1) for the TryS reaction. Mutating Arg-553 or Arg-613 to Lys, Leu, Gln, or Glu resulted in marked reduction or abrogation (R553E) of activity. Limited proteolysis with factor Xa or trypsin resulted in cleavage at Arg-556 that was accompanied by loss of activity. The presence of substrates, in particular of ATP and GSH alone or in combination, delayed proteolysis of wild-type Cf-TryS and Cf-TryS R553Q but not in Cf-TryS R613Q, which suggests dynamic interactions of remote domains in substrate binding and catalysis.


Asunto(s)
Amida Sintasas/metabolismo , Crithidia fasciculata/metabolismo , Glutatión/análogos & derivados , Glutatión/biosíntesis , Espermidina/análogos & derivados , Espermidina/biosíntesis , Adenosina Trifosfatasas , Amida Sintasas/genética , Amidohidrolasas , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Catálisis , Cinética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Espermidina/metabolismo
2.
Free Radic Biol Med ; 36(10): 1289-302, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15110394

RESUMEN

In trypanosomes, the parasite-specific thiol trypanothione [T(SH)2] fulfills various functions, the best established being detoxification of H2O2 and organic hydroperoxides and ribonucleotide reduction. Recently, a trypanothione synthetase (Tb-TryS) gene from Trypanosoma brucei was isolated and the heterologously expressed Tb-TryS catalyzed the entire synthesis of T(SH)2 from glutathione (GSH) and spermidine in vitro. To confirm the in situ function of the complex Tb-TryS activities and to evaluate the importance of T(SH)2 metabolism in T. brucei, TryS suppression by double-stranded RNA interference was performed. Knockdown of TryS led to depletion of both T(SH)2 and glutathionylspermidine (Gsp) and accumulation of GSH, while concomitantly impairment of viability and arrest of proliferation were observed. TryS-downregulated cells displayed a significantly increased sensitivity to H2O2 and tert.-butyl hydroperoxide. These data verify the hypothesis that in T. brucei, a single enzyme synthesizes the spermidine-conjugated thiols (Gsp and T(SH)2) and further confirms the significance of trypanothione in the defense against oxidative stress and the maintenance of viability and proliferation in unstressed parasites.


Asunto(s)
Amida Sintasas/genética , Amida Sintasas/metabolismo , Glutatión/análogos & derivados , Estrés Oxidativo , Interferencia de ARN , Espermidina/análogos & derivados , Trypanosoma brucei brucei/enzimología , Amida Sintasas/antagonistas & inhibidores , Animales , Antimetabolitos Antineoplásicos/farmacología , Butionina Sulfoximina/farmacología , Supervivencia Celular , Regulación hacia Abajo , Glutatión/metabolismo , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Espermidina/metabolismo , Supresión Genética
3.
Arch Biochem Biophys ; 423(1): 182-91, 2004 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-14871480

RESUMEN

Drug resistance and virulence of Mycobacterium tuberculosis are in part related to the pathogen's antioxidant defense systems. KatG(-) strains are resistant to the first line tuberculostatic isoniazid but need to compensate their catalase deficiency by alternative peroxidase systems to stay virulent. So far, only NADH-driven and AhpD-mediated hydroperoxide reduction by AhpC has been implicated as such virulence-determining mechanism. We here report on two novel pathways which underscore the importance of the thioredoxin system for antioxidant defense in M. tuberculosis: (i) NADPH-driven hydroperoxide reduction by AhpC that is mediated by thioredoxin reductase and thioredoxin C and (ii) hydroperoxide reduction by the atypical peroxiredoxin TPx that equally depends on thioredoxin reductase but can use both, thioredoxin B and C. Kinetic analyses with different hydroperoxides including peroxynitrite qualify the redox cascade comprising thioredoxin reductase, thioredoxin C, and TPx as the most efficient system to protect M. tuberculosis against oxidative and nitrosative stress in situ.


Asunto(s)
Peróxidos Lipídicos/metabolismo , Mycobacterium tuberculosis/metabolismo , Tiorredoxinas/metabolismo , Proteínas Bacterianas/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Ácido Peroxinitroso/metabolismo
4.
Biochemistry ; 42(50): 14720-8, 2003 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-14674746

RESUMEN

Tryparedoxins (TXNs) are trypanothione-dependent peroxiredoxin oxidoreductases involved in hydroperoxide detoxification that have been shown to determine virulence in trypanosomatids. The structure of (15)N,(13)C-doubly-labeled, C-terminally-His-tagged tryparedoxin 1 from Crithidia fasciculata (Cf TXN1) was elucidated by three-dimensional NMR spectroscopy. Global folding was found to be similar to the crystal structure, but regions near the active site, especially the onset of helix alpha1 with the redox-active Cys 43 and helix alpha2 relevant to substrate binding, were less well defined in solution. The redox-inactive inhibitory substrate analogue N(1),N(8)-bis(ophthalmyl)spermidine was used to study the substrate/TXN interaction by two-dimensional (1)H,(15)N NMR spectroscopy. The NMR data complemented by molecular modeling revealed several alternative modes of ligand binding. The results confirm and extend the concept of TXN action and specificity derived from X-ray analysis and site-directed mutagenesis and thus improve the rational basis for inhibitor design.


Asunto(s)
Glutatión/análogos & derivados , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Espermidina/análogos & derivados , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Animales , Simulación por Computador , Crithidia , Cristalografía por Rayos X , Activación Enzimática , Glutatión/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/química , Soluciones , Espermidina/química , Especificidad por Sustrato , Tiorredoxinas/antagonistas & inhibidores
5.
Biol Chem ; 384(4): 653-6, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12751794

RESUMEN

Trypanothione [T(SH)2], the major redox mediator in pathogenic trypanosomatids, is synthetized stepwise by two distinct enzymes in Crithidia fasciculata, while in Trypanosoma cruzi a single enzyme catalyzes both steps. A full-length reading frame presumed to encode trypanothione synthetase (TryS) was obtained by PCR using DNA of T. brucei as template and primers based on fragments of putative TryS genes. The recombinant protein produced by E. coli Origami (DE3) was purified to homogeneity by chelate and ion exchange chromatography. The enzyme catalyzed both reactions of T(SH)2 biosynthesis. Thus, T(SH)2 synthesis appears to be similar in African (T. brucei) and New World (T. cruzi) trypanosomes but distinct from that of Crithidia.


Asunto(s)
Glutatión/análogos & derivados , Glutatión/biosíntesis , Espermidina/análogos & derivados , Espermidina/biosíntesis , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Crithidia fasciculata/metabolismo , Escherichia coli/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Peso Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Trypanosoma cruzi/metabolismo , Tripsina
7.
Arch Biochem Biophys ; 397(2): 324-35, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11795890

RESUMEN

Tryparedoxin peroxidase (TXNPx) of Trypanosomatidae is the terminal peroxidase of a complex redox cascade that detoxifies hydroperoxides by NADPH (Nogoceke et al., Biol. Chem. 378, 827-836, 1997). A gene putatively coding for a peroxiredoxin-type TXNPx was identified in L. donovani and expressed in Escherichia coli to yield an N-terminally His-tagged protein (LdH6TXNPx). LdH6TXNPx proved to be an active peroxidase with tryparedoxin (TXN) 1 and 2 of Crithidia fasciculata as cosubstrates. LdH6TXNPx efficiently reduces H2O2, is moderately active with t-butyl and cumene hydroperoxide, but only marginally with linoleic acid hydroperoxide and phosphatidyl choline hydroperoxide. The enzyme displays ping-pong kinetics with a k(cat) of 11.2 s(-1) and limiting K(m) values for t-butyl hydroperoxide and CfTXN1 of 50 and 3.6 microM, respectively. Site-directed mutagenesis confirmed that C52 and C173, as in related peroxiredoxins, are involved in catalysis. Exchanges of R128 against D and T49 against S and V, supported by molecular modelling, further disclose that the SH group of C52 builds the center of a novel catalytic triad. By hydrogen bonding with the OH of T49 and by the positive charge of R128 the solvent-exposed thiol of C52 becomes deprotonated to react with ROOH. Molecular models of oxidized TXNPx show C52 disulfide-bridged with C173' that can be attacked by C41 of TXN2. By homology, the deduced mechanism may apply to most peroxiredoxins and complements current views of peroxiredoxin catalysis.


Asunto(s)
Leishmania donovani/enzimología , Peroxidasas/metabolismo , Proteínas Protozoarias , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Clonación Molecular , Leishmania donovani/genética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Peroxidasas/genética , Peróxidos/metabolismo , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA