Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Bioinformatics ; 23(1): 387, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153474

RESUMEN

The recent global focus on big data in medicine has been associated with the rise of artificial intelligence (AI) in diagnosis and decision-making following recent advances in computer technology. Up to now, AI has been applied to various aspects of medicine, including disease diagnosis, surveillance, treatment, predicting future risk, targeted interventions and understanding of the disease. There have been plenty of successful examples in medicine of using big data, such as radiology and pathology, ophthalmology cardiology and surgery. Combining medicine and AI has become a powerful tool to change health care, and even to change the nature of disease screening in clinical diagnosis. As all we know, clinical laboratories produce large amounts of testing data every day and the clinical laboratory data combined with AI may establish a new diagnosis and treatment has attracted wide attention. At present, a new concept of radiomics has been created for imaging data combined with AI, but a new definition of clinical laboratory data combined with AI has lacked so that many studies in this field cannot be accurately classified. Therefore, we propose a new concept of clinical laboratory omics (Clinlabomics) by combining clinical laboratory medicine and AI. Clinlabomics can use high-throughput methods to extract large amounts of feature data from blood, body fluids, secretions, excreta, and cast clinical laboratory test data. Then using the data statistics, machine learning, and other methods to read more undiscovered information. In this review, we have summarized the application of clinical laboratory data combined with AI in medical fields. Undeniable, the application of Clinlabomics is a method that can assist many fields of medicine but still requires further validation in a multi-center environment and laboratory.


Asunto(s)
Inteligencia Artificial , Laboratorios Clínicos , Macrodatos , Minería de Datos , Aprendizaje Automático
2.
Front Genet ; 13: 913886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35770000

RESUMEN

Many studies in recent years have demonstrated that some messenger RNA (mRNA) in platelets can be used as biomarkers for the diagnosis of pan-cancer. The quantitative real-time polymerase chain reaction (RT-qPCR) molecular technique is most commonly used to determine mRNA expression changes in platelets. Accurate and reliable relative RT-qPCR is highly dependent on reliable reference genes. However, there is no study to validate the reference gene in platelets for pan-cancer. Given that the expression of some commonly used reference genes is altered in certain conditions, selecting and verifying the most suitable reference gene for pan-cancer in platelets is necessary to diagnose early stage cancer. This study performed bioinformatics and functional analysis from the RNA-seq of platelets data set (GSE68086). We generated 95 candidate reference genes after the primary bioinformatics step. Seven reference genes (YWHAZ, GNAS, GAPDH, OAZ1, PTMA, B2M, and ACTB) were screened out among the 95 candidate reference genes from the data set of the platelets' transcriptome of pan-cancer and 73 commonly known reference genes. These candidate reference genes were verified by another platelets expression data set (GSE89843). Then, we used RT-qPCR to confirm the expression levels of these seven genes in pan-cancer patients and healthy individuals. These RT-qPCR results were analyzed using the internal stability analysis software programs (the comparative Delta CT method, geNorm, NormFinder, and BestKeeper) to rank the candidate genes in the order of decreasing stability. By contrast, the GAPDH gene was stably and constitutively expressed at high levels in all the tested samples. Therefore, GAPDH was recommended as the most suitable reference gene for platelet transcript analysis. In conclusion, our result may play an essential part in establishing a molecular diagnostic platform based on the platelets to diagnose pan-cancer.

3.
Biomed Res Int ; 2020: 3508107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32596302

RESUMEN

Therapeutic antibodies are one of the most important parts of the pharmaceutical industry. They are widely used in treating various diseases such as autoimmune diseases, cancer, inflammation, and infectious diseases. Their development process however is often brought to a standstill or takes a longer time and is then more expensive due to their hydrophobicity problems. Hydrophobic interactions can cause problems on half-life, drug administration, and immunogenicity at all stages of antibody drug development. Some of the most widely accepted and used technologies for determining the hydrophobic interactions of antibodies include standup monolayer adsorption chromatography (SMAC), salt-gradient affinity-capture self-interaction nanoparticle spectroscopy (SGAC-SINS), and hydrophobic interaction chromatography (HIC). However, to measure SMAC, SGAC-SINS, and HIC for hundreds of antibody drug candidates is time-consuming and costly. To save time and money, a predictor called SSH is developed. Based on the antibody's sequence only, it can predict the hydrophobic interactions of monoclonal antibodies (mAbs). Using the leave-one-out crossvalidation, SSH achieved 91.226% accuracy, 96.396% sensitivity or recall, 84.196% specificity, 87.754% precision, 0.828 Mathew correlation coefficient (MCC), 0.919 f-score, and 0.961 area under the receiver operating characteristic (ROC) curve (AUC).


Asunto(s)
Anticuerpos Monoclonales/química , Interacciones Hidrofóbicas e Hidrofílicas , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Cromatografía Liquida , Curva ROC , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...