Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
2.
Plant J ; 118(1): 106-123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38111157

RESUMEN

Sorghum anthracnose caused by the fungus Colletotrichum sublineola (Cs) is a damaging disease of the crop. Here, we describe the identification of ANTHRACNOSE RESISTANCE GENES (ARG4 and ARG5) encoding canonical nucleotide-binding leucine-rich repeat (NLR) receptors. ARG4 and ARG5 are dominant resistance genes identified in the sorghum lines SAP135 and P9830, respectively, that show broad-spectrum resistance to Cs. Independent genetic studies using populations generated by crossing SAP135 and P9830 with TAM428, fine mapping using molecular markers, comparative genomics and gene expression studies determined that ARG4 and ARG5 are resistance genes against Cs strains. Interestingly, ARG4 and ARG5 are both located within clusters of duplicate NLR genes at linked loci separated by ~1 Mb genomic region. SAP135 and P9830 each carry only one of the ARG genes while having the recessive allele at the second locus. Only two copies of the ARG5 candidate genes were present in the resistant P9830 line while five non-functional copies were identified in the susceptible line. The resistant parents and their recombinant inbred lines carrying either ARG4 or ARG5 are resistant to strains Csgl1 and Csgrg suggesting that these genes have overlapping specificities. The role of ARG4 and ARG5 in resistance was validated through sorghum lines carrying independent recessive alleles that show increased susceptibility. ARG4 and ARG5 are located within complex loci displaying interesting haplotype structures and copy number variation that may have resulted from duplication. Overall, the identification of anthracnose resistance genes with unique haplotype stucture provides a foundation for genetic studies and resistance breeding.


Asunto(s)
Colletotrichum , Sorghum , Haplotipos , Sorghum/genética , Variaciones en el Número de Copia de ADN , Fitomejoramiento , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Colletotrichum/fisiología , Resistencia a la Enfermedad/genética
3.
Plant J ; 113(2): 308-326, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36441009

RESUMEN

Sorghum is an important food and feed crop globally; its production is hampered by anthracnose disease caused by the fungal pathogen Colletotrichum sublineola (Cs). Here, we report identification and characterization of ANTHRACNOSE RESISTANCE GENE 2 (ARG2) encoding a nucleotide-binding leucine-rich repeat (NLR) protein that confers race-specific resistance to Cs strains. ARG2 is one of a cluster of several NLR genes initially identified in the sorghum differential line SC328C that is resistant to some Cs strains. This cluster shows structural and copy number variations in different sorghum genotypes. Different sorghum lines carrying independent ARG2 alleles provided the genetic validation for the identity of the ARG2 gene. ARG2 expression is induced by Cs, and chitin induces ARG2 expression in resistant but not in susceptible lines. ARG2-mediated resistance is accompanied by higher expression of defense and secondary metabolite genes at early stages of infection, and anthocyanin and zeatin metabolisms are upregulated in resistant plants. Interestingly, ARG2 localizes to the plasma membrane when transiently expressed in Nicotiana benthamiana. Importantly, ARG2 plants produced higher shoot dry matter than near-isogenic lines carrying the susceptible allele suggesting an absence of an ARG2 associated growth trade-off. Furthermore, ARG2-mediated resistance is stable at a wide range of temperatures. Our observations open avenues for resistance breeding and for dissecting mechanisms of resistance.


Asunto(s)
Colletotrichum , Sorghum , Sorghum/genética , Variaciones en el Número de Copia de ADN , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Genotipo , Resistencia a la Enfermedad/genética
4.
Trends Plant Sci ; 28(2): 211-222, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184487

RESUMEN

Botrytis cinerea, a widespread plant pathogen with a necrotrophic lifestyle, causes gray mold disease in many crops. Massive secretion of enzymes and toxins was long considered to be the main driver of infection, but recent studies have uncovered a rich toolbox for B. cinerea pathogenicity. The emerging picture is of a multilayered infection process governed by the exchange of factors that collectively contribute to disease development. No plant shows complete resistance against B. cinerea, but pattern-triggered plant immune responses have the potential to significantly reduce disease progression, opening new possibilities for producing B. cinerea-tolerant plants. We examine current B. cinerea infection models, highlight knowledge gaps, and suggest directions for future studies.


Asunto(s)
Botrytis , Enfermedades de las Plantas , Virulencia
5.
Front Plant Sci ; 13: 1005077, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311072

RESUMEN

Histone posttranslational modifications shape the chromatin landscape of the plant genome and affect gene expression in response to developmental and environmental cues. To date, the role of histone modifications in regulating plant responses to environmental nutrient availability, especially in agriculturally important species, remains largely unknown. We describe the functions of two histone lysine methyltransferases, SET Domain Group 33 (SDG33) and SDG34, in mediating nitrogen (N) responses of shoots and roots in tomato. By comparing the transcriptomes of CRISPR edited tomato lines sdg33 and sdg34 with wild-type plants under N-supplied and N-starved conditions, we uncovered that SDG33 and SDG34 regulate overlapping yet distinct downstream gene targets. In response to N level changes, both SDG33 and SDG34 mediate gene regulation in an organ-specific manner: in roots, SDG33 and SDG34 regulate a gene network including Nitrate Transporter 1.1 (NRT1.1) and Small Auxin Up-regulated RNA (SAUR) genes. In agreement with this, mutations in sdg33 or sdg34 abolish the root growth response triggered by an N-supply; In shoots, SDG33 and SDG34 affect the expression of photosynthesis genes and photosynthetic parameters in response to N. Our analysis thus revealed that SDG33 and SDG34 regulate N-responsive gene expression and physiological changes in an organ-specific manner, thus presenting previously unknown candidate genes as targets for selection and engineering to improve N uptake and usage in crop plants.

6.
Curr Opin Plant Biol ; 69: 102291, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063637

RESUMEN

Pathogenesis in plant diseases is complex comprising diverse pathogen virulence and plant immune mechanisms. These pathogens cause damaging plant diseases by deploying specialized and generic virulence strategies that are countered by intricate resistance mechanisms. The significant challenges that necrotrophs pose to crop production are predicted to increase with climate change. Immunity to biotrophs and hemibiotrophs is dominated by intracellular receptors that recognize specific effectors and activate resistance. These mechanisms play only minor roles in resistance to necrotrophs. Pathogen- or host-derived conserved pattern molecules trigger immune responses that broadly contribute to plant immunity. However, certain pathogen or host-derived immune elicitors are enriched by the virulence activities of necrotrophs. Different plant hormones modulate systemic resistance and cell death that have differential impacts on resistance to pathogens of different lifestyles. Knowledge of mechanisms that contribute to resistance to necrotrophs has expanded. Besides toxins and cell wall degrading enzymes that dominate the pathogenesis of necrotrophs, other effectors with subtle contributions are being identified.


Asunto(s)
Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Pared Celular/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Virulencia
7.
New Phytol ; 235(5): 1957-1976, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35633111

RESUMEN

Histone lysine methylations (HLMs) are implicated in control of gene expression in different eukaryotes. However, the role of HLMs in regulating desirable crop traits and the enzymes involved in these modifications are poorly understood. We studied the functions of tomato histone H3 lysine methyltransferases SET Domain Group 33 (SDG33) and SDG34 in biotic and abiotic stress responses. SDG33 and SDG34 gene edited mutants were altered in H3K36 and H3K4 methylations, and expression of genes involved in diverse processes and responses to biotic and abiotic stimuli. The double but not the single mutants show resistance to the fungal pathogen Botrytis cinerea. Interestingly, single mutants were tolerant to drought and the double mutant showed superior tolerance and plant growth consistent with independent and additive functions. Mutants maintained higher water status during drought and improved recovery and survival after lapse of drought. Notably, diminution of H3K4 and H3K36 trimethylation and expression of negative regulators in challenged plants contributes to stress tolerance of the mutants. Mutations in SDG33 and SDG34 are likely to remove predisposition to biotic and abiotic stress by disrupting permissive transcriptional context promoting expression of negative regulatory factors. These allows improvement of stress and pathogen tolerance, without growth trade-offs, through modification of histone epigenetic marks.


Asunto(s)
Solanum lycopersicum , Regulación de la Expresión Génica de las Plantas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Solanum lycopersicum/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , Dominios PR-SET
8.
Plant Cell ; 34(5): 1641-1665, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35018449

RESUMEN

Sorghum (Sorghum bicolor), the fifth most widely grown cereal crop globally, provides food security for millions of people. Anthracnose caused by the fungus Colletotrichum sublineola is a major disease of sorghum worldwide. We discovered a major fungal resistance locus in sorghum composed of the nucleotide-binding leucine-rich repeat receptor gene ANTHRACNOSE RESISTANCE GENE1 (ARG1) that is completely nested in an intron of a cis-natural antisense transcript (NAT) gene designated CARRIER OF ARG1 (CARG). Susceptible genotypes express CARG and two alternatively spliced ARG1 transcripts encoding truncated proteins lacking the leucine-rich repeat domains. In resistant genotypes, elevated expression of an intact allele of ARG1, attributed to the loss of CARG transcription and the presence of miniature inverted-repeat transposable element sequences, resulted in broad-spectrum resistance to fungal pathogens with distinct virulence strategies. Increased ARG1 expression in resistant genotypes is also associated with higher histone H3K4 and H3K36 methylation. In susceptible genotypes, lower ARG1 expression is associated with reduced H3K4 and H3K36 methylation and increased expression of NATs of CARG. The repressive chromatin state associated with H3K9me2 is low in CARG-expressing genotypes within the CARG exon and higher in genotypes with low CARG expression. Thus, ARG1 is regulated by multiple mechanisms and confers broad-spectrum, strong resistance to fungal pathogens.


Asunto(s)
Sorghum , Grano Comestible , Genotipo , Humanos , Leucina/genética , Enfermedades de las Plantas/microbiología , Sorghum/genética
9.
New Phytol ; 233(1): 458-478, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655240

RESUMEN

The molecular mechanisms of quantitative resistance (QR) to fungal pathogens and their relationships with growth pathways are poorly understood. We identified tomato TRK1 (TPK1b Related Kinase1) and determined its functions in tomato QR and plant growth. TRK1 is a receptor-like cytoplasmic kinase that complexes with tomato LysM Receptor Kinase (SlLYK1). SlLYK1 and TRK1 are required for chitin-induced fungal resistance, accumulation of reactive oxygen species, and expression of immune response genes. Notably, TRK1 and SlLYK1 regulate SlMYC2, a major transcriptional regulator of jasmonic acid (JA) responses and fungal resistance, at transcriptional and post-transcriptional levels. Further, TRK1 is also required for maintenance of proper meristem growth, as revealed by the ectopic meristematic activity, enhanced branching, and altered floral structures in TRK1 RNAi plants. Consistently, TRK1 interacts with SlCLV1 and SlWUS, and TRK1 RNAi plants show increased expression of SlCLV3 and SlWUS in shoot apices. Interestingly, TRK1 suppresses chitin-induced gene expression in meristems but promotes expression of the same genes in leaves. SlCLV1 and TRK1 perform contrasting functions in defense but similar functions in plant growth. Overall, through molecular and biochemical interactions with critical regulators, TRK1 links upstream defense and growth signals to downstream factor in fungal resistance and growth homeostasis response regulators.


Asunto(s)
Solanum lycopersicum , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Meristema/metabolismo , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
BMC Genomics ; 22(1): 295, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888060

RESUMEN

BACKGROUND: Sorghum grain mold is the most important disease of the crop. The disease results from simultaneous infection of the grain by multiple fungal species. Host responses to these fungi and the underlying molecular and cellular processes are poorly understood. To understand the genetic, molecular and biochemical components of grain mold resistance, transcriptome profiles of the developing grain of resistant and susceptible sorghum genotypes were studied. RESULTS: The developing kernels of grain mold resistant RTx2911 and susceptible RTx430 sorghum genotypes were inoculated with a mixture of fungal pathogens mimicking the species complexity of the disease under natural infestation. Global transcriptome changes corresponding to multiple molecular and cellular processes, and biological functions including defense, secondary metabolism, and flavonoid biosynthesis were observed with differential regulation in the two genotypes. Genes encoding pattern recognition receptors (PRRs), regulators of growth and defense homeostasis, antimicrobial peptides, pathogenesis-related proteins, zein seed storage proteins, and phytoalexins showed increased expression correlating with resistance. Notably, SbLYK5 gene encoding an orthologue of chitin PRR, defensin genes SbDFN7.1 and SbDFN7.2 exhibited higher expression in the resistant genotype. The SbDFN7.1 and SbDFN7.2 genes are tightly linked and transcribed in opposite orientation with a likely common bidirectional promoter. Interestingly, increased expression of JAZ and other transcriptional repressors were observed that suggested the tight regulation of plant defense and growth. The data suggest a pathogen inducible defense system in the developing grain of sorghum that involves the chitin PRR, MAPKs, key transcription factors, downstream components regulating immune gene expression and accumulation of defense molecules. We propose a model through which the biosynthesis of 3-deoxyanthocynidin phytoalexins, defensins, PR proteins, other antimicrobial peptides, and defense suppressing proteins are regulated by a pathogen inducible defense system in the developing grain. CONCLUSIONS: The transcriptome data from a rarely studied tissue shed light into genetic, molecular, and biochemical components of disease resistance and suggested that the developing grain shares conserved immune response mechanisms but also components uniquely enriched in the grain. Resistance was associated with increased expression of genes encoding regulatory factors, novel grain specific antimicrobial peptides including defensins and storage proteins that are potential targets for crop improvement.


Asunto(s)
Sorghum , Resistencia a la Enfermedad/genética , Hongos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Enfermedades de las Plantas/genética , Sorghum/genética , Transcriptoma
11.
Nat Commun ; 12(1): 2166, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846308

RESUMEN

Crh proteins catalyze crosslinking of chitin and glucan polymers in fungal cell walls. Here, we show that the BcCrh1 protein from the phytopathogenic fungus Botrytis cinerea acts as a cytoplasmic effector and elicitor of plant defense. BcCrh1 is localized in vacuoles and the endoplasmic reticulum during saprophytic growth. However, upon plant infection, the protein accumulates in infection cushions; it is then secreted to the apoplast and translocated into plant cells, where it induces cell death and defense responses. Two regions of 53 and 35 amino acids are sufficient for protein uptake and cell death induction, respectively. BcCrh1 mutant variants that are unable to dimerize lack transglycosylation activity, but are still able to induce plant cell death. Furthermore, Arabidopsis lines expressing the bccrh1 gene exhibit reduced sensitivity to B. cinerea, suggesting a potential use of the BcCrh1 protein in plant immunization against this necrotrophic pathogen.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Botrytis/enzimología , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Glicosiltransferasas/metabolismo , Células Vegetales/microbiología , Agrobacterium/metabolismo , Botrytis/crecimiento & desarrollo , Botrytis/patogenicidad , Muerte Celular , Resistencia a la Enfermedad , Proteínas Fúngicas/química , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/microbiología
12.
Theor Appl Genet ; 134(4): 1167-1184, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33452894

RESUMEN

KEY MESSAGE: GWAS analysis revealed variations at loci harboring seed storage, late embryogenesis abundant protein, and a tannin biosynthesis gene associated with sorghum grain mold resistance. Grain mold is the most important disease of sorghum [Sorghum bicolor (L.) Moench]. It starts at the early stages of grain development due to concurrent infection by multiple fungal species. The genetic architecture of resistance to grain mold is poorly understood. Using a diverse set of 635 Ethiopian sorghum accessions, we conducted a multi-stage disease rating for resistance to grain mold under natural infestation in the field. Through genome-wide association analyses with 173,666 SNPs and multiple models, two novel loci were identified that were consistently associated with grain mold resistance across environments. Sequence variation at new loci containing sorghum KAFIRIN gene encoding a seed storage protein affecting seed texture and LATE EMBRYOGENESIS ABUNDANT 3 (LEA3) gene encoding a protein that accumulates in seeds, previously implicated in stress tolerance, were significantly associated with grain mold resistance. The KAFIRIN and LEA3 loci were also significant factors in grain mold resistance in accessions with non-pigmented grains. Moreover, we consistently detected the known SNP (S4_62316425) in TAN1 gene, a regulator of tannin accumulation in sorghum grain to be significantly associated with grain mold resistance. Identification of loci associated with new mechanisms of resistance provides fresh insight into genetic control of the trait, while the highly resistant accessions can serve as sources of resistance genes for breeding. Overall, our association data suggest the critical role of loci harboring seed protein genes and implicate grain chemical and physical properties in sorghum grain mold resistance.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Fusarium/fisiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Semillas/inmunología , Sorghum/inmunología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Semillas/genética , Semillas/microbiología , Sorghum/genética , Sorghum/microbiología
13.
BMC Genomics ; 21(1): 760, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33143636

RESUMEN

BACKGROUND: Anthracnose is a damaging disease of sorghum caused by the fungal pathogen Colletotrichum sublineolum. Genome-wide mRNA and microRNA (miRNA) profiles of resistant and susceptible sorghum genotypes were studied to understand components of immune responses, and fungal induced miRNA and target gene networks. RESULTS: A total of 18 mRNA and 12 miRNA libraries from resistant and susceptible sorghum lines were sequenced prior to and after inoculation with C. sublineolum. Significant differences in transcriptomes of the susceptible and resistant genotypes were observed with dispersion distance and hierarchical cluster tree analyses. Of the total 33,032 genes predicted in the sorghum genome, 19,593 were induced by C. sublineolum, and 15,512 were differentially expressed (DEGs) between the two genotypes. The resistant line was marked by significant reprogramming of the transcriptome at 24 h post inoculation (hpi), and a decrease at 48 hpi, whereas the susceptible line displayed continued changes in gene expression concordant with elevated fungal growth in the susceptible genotype. DEGs encode proteins implicated in diverse functions including photosynthesis, synthesis of tetrapyrrole, carbohydrate and secondary metabolism, immune signaling, and chitin binding. Genes encoding immune receptors, MAPKs, pentatricopeptide repeat proteins, and WRKY transcription factors were induced in the resistant genotype. In a parallel miRNA profiling, the susceptible line displayed greater number of differentially expressed miRNAs than the resistant line indicative of a widespread suppression of gene expression. Interestingly, we found 75 miRNAs, including 36 novel miRNAs, which were differentially expressed in response to fungal inoculation. The expression of 50 miRNAs was significantly different between resistant and susceptible lines. Subsequently, for 35 differentially expressed miRNAs, the corresponding 149 target genes were identified. Expression of 56 target genes were significantly altered after inoculation, showing inverse expression with the corresponding miRNAs. CONCLUSIONS: We provide insights into genome wide dynamics of mRNA and miRNA profiles, biological and cellular processes underlying host responses to fungal infection in sorghum. Resistance is correlated with early transcriptional reprogramming of genes in various pathways. Fungal induced genes, miRNAs and their targets with a potential function in host responses to anthracnose were identified, opening avenues for genetic dissection of resistance mechanisms.


Asunto(s)
Colletotrichum , MicroARNs , Enfermedades de las Plantas/microbiología , Sorghum , Colletotrichum/patogenicidad , Perfilación de la Expresión Génica , MicroARNs/genética , Enfermedades de las Plantas/genética , ARN Mensajero , Sorghum/genética , Sorghum/microbiología , Transcriptoma
14.
Plant Genome ; 13(3): e20055, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33217211

RESUMEN

Understanding population genetic structure and diversity of a crop is essential in designing selection strategies in plant breeding. About 2010 Ethiopian sorghum accessions were phenotyped for different traits at multiple locations. A subset of the collection, 1628 accessions, predominantly landraces, some improved varieties, and inbred lines were genotyped by sequencing. Phenotypic data revealed association of important traits with different sorghum growing agro-climatic regions, high genetic diversity and the presence of rare natural variation in the Ethiopian sorghum germplasm. Subsequent genotypic analysis determined optimum number of sub-populations, distinct cluster groups and ancestries of each sorghum accessions. To improve utilization of germplasm, a core subset of 387 lines were selected following posteriori grouping of genotypes based on cluster groups obtained through GBS analysis followed by stratified random sampling using quantitative traits. In order to evaluate how well this new sorghum and millet innovation lab (SMIL) collection from Ethiopia is represented within the largest world sorghum collection at United States Department of Agriculture - National Plant Germplasm System (USDA-NPGS) and the sorghum association panel (SAP), comparisons were conducted based on SNP data. The SMIL collection displayed high genetic diversity with some redundancy with the USDA-NPGS germplasm but SAP showed clear distinction. Furthermore, genome-environment association analysis identified candidate genes associated with adaptation to abiotic factors, that will be important for exploitation of adaptive potential to different environments. In summary, our results described the diversity and relationship of sorghum collections, representativeness of developed core and provide novel insights into candidate genes associated to abiotic stress tolerance.


Asunto(s)
Sorghum , Variación Genética , Genómica , Genotipo , Fenotipo , Sorghum/genética , Estados Unidos
15.
Sci Rep ; 10(1): 13685, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792547

RESUMEN

Fungal endophytes can influence production and post-harvest challenges in carrot, though the identity of these microbes as well as factors affecting their composition have not yet been determined, which prevents growers from managing these organisms to improve crop performance. Consequently, we characterized the endophytic mycobiome in the taproots of three carrot genotypes that vary in resistance to two pathogens grown in a trial comparing organic and conventional crop management using Illumina sequencing of the internal transcribed spacer (ITS) gene. A total of 1,480 individual operational taxonomic units (OTUs) were identified. Most were consistent across samples, indicating that they are part of a core mycobiome, though crop management influenced richness and diversity, likely in response to differences in soil properties. There were also differences in individual OTUs among genotypes and the nematode resistant genotype was most responsive to management system indicating that it has greater control over its endophytic mycobiome, which could potentially play a role in resistance. Members of the Ascomycota were most dominant, though the exact function of most taxa remains unclear. Future studies aimed at overcoming difficulties associated with isolating fungal endophytes are needed to identify these microbes at the species level and elucidate their specific functional roles.


Asunto(s)
Daucus carota/crecimiento & desarrollo , Hongos/clasificación , Análisis de Secuencia de ADN/métodos , Agricultura , Daucus carota/genética , Daucus carota/microbiología , Endófitos , Hongos/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Micobioma , Filogenia , Raíces de Plantas/microbiología
16.
New Phytol ; 228(5): 1573-1590, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32619295

RESUMEN

CDK8 is a key subunit of Mediator complex, a large multiprotein complex that is a fundamental part of the conserved eukaryotic transcriptional machinery. However, the biological functions of CDK8 in plant abiotic stress responses remain largely unexplored. Here, we demonstrated CDK8 as a critical regulator in the abscisic acid (ABA) signaling and drought response pathways in Arabidopsis. Compared to wild-type, cdk8 mutants showed reduced sensitivity to ABA, impaired stomatal apertures and hypersensitivity to drought stress. Transcriptomic and chromatin immunoprecipitation analysis revealed that CDK8 positively regulates the transcription of several ABA-responsive genes, probably through promoting the recruitment of RNA polymerase II to their promoters. We discovered that both CDK8 and SnRK2.6 interact physically with an ERF/AP2 transcription factor RAP2.6, which can directly bind to the promoters of RD29A and COLD-REGULATED 15A (COR15A) with GCC or DRE elements, thereby promoting their expression. Importantly, we also showed that CDK8 is essential for the ABA-induced expression of RAP2.6 and RAP2.6-mediated upregulation of ABA-responsive genes, indicating that CDK8 could link the SnRK2.6-mediated ABA signaling to RNA polymerase II to promote immediate transcriptional response to ABA and drought signals. Overall, our data provide new insights into the roles of CDK8 in modulating ABA signaling and drought responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Quinasa 8 Dependiente de Ciclina , Factores de Transcripción , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
PLoS One ; 15(6): e0233783, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32497087

RESUMEN

Managing pests in carrot production is challenging. Endophytic microbes have been demonstrated to improve the health and productivity of many crops, but factors affecting endophyte dynamics in carrot is still not well understood. The goal of this study was to determine how crop management system and carrot genotype interact to affect the composition and potential of endophytes to mitigate disease caused by Alternaria dauci, an important carrot pathogen. Twenty-eight unique isolates were collected from the taproots of nine diverse genotypes of carrot grown in a long-term trial comparing organic and conventional management. Antagonistic activity was quantified using an in vitro assay, and potential for individual isolates to mitigate disease was evaluated in greenhouse trials using two carrot cultivars. Results confirm that carrot taproots are colonized by an abundant and diverse assortment of bacteria and fungi representing at least distinct 13 genera. Soils in the organic system had greater total organic matter, microbial biomass and activity than the conventional system and endophyte composition in taproots grown in this system were more abundant and diverse, and had greater antagonistic activity. Carrot genotype also affected endophyte abundance as well as potential for individual isolates to affect seed germination, seedling growth and tolerance to A. dauci. The benefits of endophytes on carrot growth were greatest when plants were subject to A. dauci stress, highlighting the importance of environmental conditions in the functional role of endophytes. Results of this study provide evidence that endophytes can play an important role in improving carrot performance and mediating resistance to A. dauci, and it may someday be possible to select for these beneficial plant-microbial relationships in carrot breeding programs. Implementing soil-building practices commonly used in organic farming systems has potential to promote these beneficial relationships and improve the health and productivity of carrot crops.


Asunto(s)
Alternaria/fisiología , Producción de Cultivos/métodos , Daucus carota/genética , Daucus carota/microbiología , Endófitos/fisiología , Genotipo , Enfermedades de las Plantas/microbiología , Protección de Cultivos/métodos , Daucus carota/crecimiento & desarrollo , Endófitos/aislamiento & purificación , Germinación , Suelo/química , Microbiología del Suelo
18.
Front Microbiol ; 11: 604566, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391227

RESUMEN

Crop domestication events followed by targeted breeding practices have been pivotal for improvement of desirable traits and to adapt cultivars to local environments. Domestication also resulted in a strong reduction in genetic diversity among modern cultivars compared to their wild relatives, though the effect this could have on tripartite relationships between plants, belowground beneficial microbes and aboveground pathogens remains undetermined. We quantified plant growth performance, basal resistance and induced systemic resistance (ISR) by Trichoderma harzianum, a beneficial soil microbe against Botrytis cinerea, a necrotrophic fungus and Phytophthora infestans, a hemi-biotrophic oomycete, in 25 diverse tomato genotypes. Wild tomato related species, tomato landraces and modern commercial cultivars that were conventionally or organically bred, together, representing a domestication gradient were evaluated. Relationships between basal and ISR, plant physiological status and phenolic compounds were quantified to identify potential mechanisms. Trichoderma enhanced shoot and root biomass and ISR to both pathogens in a genotype specific manner. Moreover, improvements in plant performance in response to Trichoderma gradually decreased along the domestication gradient. Wild relatives and landraces were more responsive to Trichoderma, resulting in greater suppression of foliar pathogens than modern cultivars. Photosynthetic rate and stomatal conductance of some tomato genotypes were improved by Trichoderma treatment whereas leaf nitrogen status of the majority of tomato genotypes were not altered. There was a negative relationship between basal resistance and induced resistance for both diseases, and a positive correlation between Trichoderma-ISR to B. cinerea and enhanced total flavonoid contents. These findings suggest that domestication and breeding practices have altered plant responsiveness to beneficial soil microbes. Further studies are needed to decipher the molecular mechanisms underlying the differential promotion of plant growth and resistance among genotypes, and identify molecular markers to integrate selection for responsiveness into future breeding programs.

19.
Front Plant Sci ; 10: 691, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191590

RESUMEN

The eastern Africa region, Ethiopia and its surroundings, is considered as the center of origin and diversity for sorghum, and has contributed to global sorghum genetic improvement. The germplasm from this region harbors enormous genetic variation for various traits but little is known regarding the genetic architecture of most traits. Here, 1425 Ethiopian landrace accessions were phenotyped under field conditions for presence or absence of awns, panicle compactness and shape, panicle exsertion, pericarp color, glume cover, plant height and smut resistance under diverse environmental conditions in Ethiopia. In addition, F1 hybrids obtained from a subset of 1341 accessions crossed to an A1 cytoplasmic male sterile line, ATx623, were scored for fertility/sterility reactions. Subsequently, genotyping-by-sequencing generated a total of 879,407 SNPs from which 72,190 robust SNP markers were selected after stringent quality control (QC). Pairwise distance-based hierarchical clustering identified 11 distinct groups. Of the genotypes assigned to either one of the 11 sub-populations, 65% had high ancestry membership coefficient with the likelihood of more than 0.60 and the remaining 35% represented highly admixed accessions. A genome-wide association study (GWAS) identified loci and SNPs associated with aforementioned traits. GWAS based on compressed mixed linear model (CMLM) identified SNPs with significant association (FDR ≤ 0.05) to the different traits studied. The percentage of total phenotypic variation explained with significant SNPs across traits ranged from 2 to 43%. Candidate genes showing significant association with different traits were identified. The sorghum bHLH transcription factor, ABORTED MICROSPORES was identified as a strong candidate gene conditioning male fertility. Notably, sorghum CLAVATA1 receptor like kinase, known for regulation of plant growth, and the ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR gene RAP2-7, known to suppress transition to flowering, were significantly associated with plant height. In addition, the YELLOW SEED1 like MYB transcription factor and TANNIN1 showed strong association with pericarp color validating previous observations. Overall, the genetic architecture of natural variation representing the complex Ethiopian sorghum germplasm was established. The study contributes to the characterization of genes and alleles controlling agronomic traits, and will serve as a source of markers for molecular breeding.

20.
Plant Physiol ; 181(1): 289-304, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31110139

RESUMEN

NPR1 (NONEXPRESSER OF PR GENES1) functions as a master regulator of the plant hormone salicylic acid (SA) signaling and plays an essential role in plant immunity. In the nucleus, NPR1 interacts with transcription factors to induce the expression of PR (PATHOGENESIS-RELATED) genes and thereby promote defense responses. However, the underlying molecular mechanism of PR gene activation is poorly understood. Furthermore, despite the importance of NPR1 in plant immunity, the regulation of NPR1 expression has not been extensively studied. Here, we show that SA promotes the interaction of NPR1 with both CDK8 (CYCLIN-DEPENDENT KINASE8) and WRKY18 (WRKY DNA-BINDING PROTEIN18) in Arabidopsis (Arabidopsis thaliana). NPR1 recruits CDK8 and WRKY18 to the NPR1 promoter, facilitating its own expression. Intriguingly, CDK8 and its associated Mediator subunits positively regulate NPR1 and PR1 expression and play a pivotal role in local and systemic immunity. Moreover, CDK8 interacts with WRKY6, WRKY18, and TGA transcription factors and brings RNA polymerase II to NPR1 and PR1 promoters and coding regions to facilitate their expression. Our studies reveal a mechanism in which NPR1 recruits CDK8, WRKY18, and TGA transcription factors along with RNA polymerase II in the presence of SA and thereby facilitates its own and target gene expression for the establishment of plant immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta/genética , Ácido Salicílico/metabolismo , Arabidopsis/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...