Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(44): eadh2560, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37910625

RESUMEN

The late development of fast brain activity in infancy restricts initial processing abilities to slow information. Nevertheless, infants acquire the short-lived speech sounds of their native language during their first year of life. Here, we trace the early buildup of the infant phoneme inventory with naturalistic electroencephalogram. We apply the recent method of deconvolution modeling to capture the emergence of the feature-based phoneme representation that is known to govern speech processing in the mature brain. Our cross-sectional analysis uncovers a gradual developmental increase in neural responses to native phonemes. Critically, infants appear to acquire those phoneme features first that extend over longer time intervals-thus meeting infants' slow processing abilities. Shorter-lived phoneme features are added stepwise, with the shortest acquired last. Our study shows that the ontogenetic acceleration of electrophysiology shapes early language acquisition by determining the duration of the acquired units.


Asunto(s)
Fonética , Percepción del Habla , Lactante , Humanos , Estudios Transversales , Percepción del Habla/fisiología , Electroencefalografía , Desarrollo del Lenguaje
2.
Autism Res ; 16(9): 1681-1692, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37493078

RESUMEN

Autism is a neurodevelopmental condition that has been related to an overall imbalance between the brain's excitatory (E) and inhibitory (I) systems. Such an EI imbalance can lead to structural and functional cortical deviances and thus alter information processing in the brain, ultimately giving rise to autism traits. However, the developmental trajectory of EI imbalances across childhood and adolescence has not been investigated yet. Therefore, its relationship to autism traits is not well understood. In the present study, we determined a functional measure of the EI balance (f-EIB) from resting-state electrophysiological recordings for a final sample of 92 autistic children from 6 to 17 years of age and 100 allistic (i.e., non-autistic) children matched by age, sex, and nonverbal-IQ. We related the developmental trajectory of f-EIB to behavioral assessments of autism traits as well as language ability. Our results revealed differential EI trajectories for autistic compared to allistic children. Importantly, the developmental trajectory of f-EIB values related to individual language ability. In particular, elevated excitability in late childhood and early adolescence was linked to decreased listening comprehension. Our findings provide evidence against a general EI imbalance in autistic children when correcting for non-verbal IQ. Instead, we show that the developmental trajectory of EI balance shares variance with autism trait development at a specific age range. This is consistent with the proposal that the late development of inhibitory brain activity is a key substrate of autism traits.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adolescente , Humanos , Niño , Anciano de 80 o más Años , Cognición , Encéfalo , Lenguaje
3.
Perspect Psychol Sci ; 18(6): 1271-1281, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36753616

RESUMEN

Infants master temporal patterns of their native language at a developmental trajectory from slow to fast: Shortly after birth, they recognize the slow acoustic modulations specific to their native language before tuning into faster language-specific patterns between 6 and 12 months of age. We propose here that this trajectory is constrained by neuronal maturation-in particular, the gradual emergence of high-frequency neural oscillations in the infant electroencephalogram. Infants' initial focus on slow prosodic modulations is consistent with the prenatal availability of slow electrophysiological activity (i.e., theta- and delta-band oscillations). Our proposal is consistent with the temporal patterns of infant-directed speech, which initially amplifies slow modulations, approaching the faster modulation range of adult-directed speech only as infants' language has advanced sufficiently. Moreover, our proposal agrees with evidence from premature infants showing maturational age is a stronger predictor of language development than ex utero exposure to speech, indicating that premature infants cannot exploit their earlier availability of speech because of electrophysiological constraints. In sum, we provide a new perspective on language acquisition emphasizing neuronal development as a critical driving force of infants' language development.


Asunto(s)
Desarrollo del Lenguaje , Percepción del Habla , Lactante , Adulto , Femenino , Embarazo , Humanos , Lenguaje , Habla , Percepción del Habla/fisiología
4.
Neuroimage ; 251: 118991, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35158023

RESUMEN

Infants prefer to be addressed with infant-directed speech (IDS). IDS benefits language acquisition through amplified low-frequency amplitude modulations. It has been reported that this amplification increases electrophysiological tracking of IDS compared to adult-directed speech (ADS). It is still unknown which particular frequency band triggers this effect. Here, we compare tracking at the rates of syllables and prosodic stress, which are both critical to word segmentation and recognition. In mother-infant dyads (n=30), mothers described novel objects to their 9-month-olds while infants' EEG was recorded. For IDS, mothers were instructed to speak to their children as they typically do, while for ADS, mothers described the objects as if speaking with an adult. Phonetic analyses confirmed that pitch features were more prototypically infant-directed in the IDS-condition compared to the ADS-condition. Neural tracking of speech was assessed by speech-brain coherence, which measures the synchronization between speech envelope and EEG. Results revealed significant speech-brain coherence at both syllabic and prosodic stress rates, indicating that infants track speech in IDS and ADS at both rates. We found significantly higher speech-brain coherence for IDS compared to ADS in the prosodic stress rate but not the syllabic rate. This indicates that the IDS benefit arises primarily from enhanced prosodic stress. Thus, neural tracking is sensitive to parents' speech adaptations during natural interactions, possibly facilitating higher-level inferential processes such as word segmentation from continuous speech.


Asunto(s)
Percepción del Habla , Habla , Adulto , Niño , Femenino , Humanos , Lactante , Desarrollo del Lenguaje , Madres , Fonética , Habla/fisiología , Percepción del Habla/fisiología
5.
Neurobiol Lang (Camb) ; 3(3): 495-514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37216063

RESUMEN

During speech processing, neural activity in non-autistic adults and infants tracks the speech envelope. Recent research in adults indicates that this neural tracking relates to linguistic knowledge and may be reduced in autism. Such reduced tracking, if present already in infancy, could impede language development. In the current study, we focused on children with a family history of autism, who often show a delay in first language acquisition. We investigated whether differences in tracking of sung nursery rhymes during infancy relate to language development and autism symptoms in childhood. We assessed speech-brain coherence at either 10 or 14 months of age in a total of 22 infants with high likelihood of autism due to family history and 19 infants without family history of autism. We analyzed the relationship between speech-brain coherence in these infants and their vocabulary at 24 months as well as autism symptoms at 36 months. Our results showed significant speech-brain coherence in the 10- and 14-month-old infants. We found no evidence for a relationship between speech-brain coherence and later autism symptoms. Importantly, speech-brain coherence in the stressed syllable rate (1-3 Hz) predicted later vocabulary. Follow-up analyses showed evidence for a relationship between tracking and vocabulary only in 10-month-olds but not in 14-month-olds and indicated possible differences between the likelihood groups. Thus, early tracking of sung nursery rhymes is related to language development in childhood.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA