Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(46): eabq6971, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383676

RESUMEN

Controlled primary cell wall remodeling allows plant growth under stressful conditions, but how these changes are conveyed to adjust cellulose synthesis is not understood. Here, we identify the TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins as new members of the cellulose synthase complex (CSC) and describe their unique and hitherto unknown dynamic association with the CSC under cellulose-deficient conditions. We find that TTLs are essential for maintaining cellulose synthesis under high-salinity conditions, establishing a stress-resilient cortical microtubule array, and stabilizing CSCs at the plasma membrane. To fulfill these functions, TTLs interact with CELLULOSE SYNTHASE 1 (CESA1) and engage with cortical microtubules to promote their polymerization. We propose that TTLs function as bridges connecting stress perception with dynamic regulation of cellulose biosynthesis at the plasma membrane.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Microtúbulos/metabolismo , Membrana Celular/metabolismo , Celulosa/metabolismo , Proteínas de la Membrana/metabolismo
2.
BMC Biol ; 19(1): 161, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404410

RESUMEN

BACKGROUND: Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimation. The CW constitutes the first physical barrier as well as a primary source of nutrients for microbes interacting with plants, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. RESULTS: Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection, but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. Abolishing ethylene signaling attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. CONCLUSIONS: Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Pared Celular , Celulosa , Mecanismos de Defensa , Etilenos , Fusarium , Regulación de la Expresión Génica de las Plantas , Lignina , Enfermedades de las Plantas/genética , Transcriptoma
3.
Curr Protoc Plant Biol ; 5(3): e20113, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32598078

RESUMEN

Root vascular pathogens are some of the world's most devastating plant pathogens. However, the methods used to determine plant susceptibility to this class of pathogen are laborious, variable, and in most cases qualitative. Here we present a rapid, simple, and robust infection assay for the characterization of Arabidopsis thaliana resistance to the fungal root pathogen Fusarium oxysporum. The method utilizes fungal root vascular penetrations and fungal-induced root growth inhibition to deliver a quantitative assessment of plant susceptibility with spatial and temporal resolution. These plant susceptibility indicators are paired with a semiautomated data analysis pipeline to deliver a reproducible assessment of plant susceptibility to root vascular pathogens such as F. oxysporum. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Arabidopsis thaliana plate infection assay using fluorescently labeled Fusarium oxysporum Support Protocol 1: Preparation of A. thaliana germination plates Support Protocol 2: Preparation of the F. oxysporum culture Basic Protocol 2: Data acquisition of F. oxysporum plant infection assay Support Protocol 3: Acquiring root growth inhibition data using Fiji.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fusarium , Fiji , Enfermedades de las Plantas , Raíces de Plantas
4.
Bio Protoc ; 10(5): e3546, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659520

RESUMEN

The plant cell wall is a complex network of polysaccharides and proteins that provides strength and structural integrity to plant cells, as well as playing a vital role in growth, development, and defense response. Cell wall polysaccharides can be broadly grouped into three categories: cellulose, pectins, and hemicelluloses. Dynamic interactions between polysaccharides and cell wall-associated proteins contribute to regions of flexibility and rigidity within the cell wall, allowing for remodeling when necessary during growth, environmental adaptation, or stress response activation. These polysaccharide interactions are vital to plant growth, however they also contribute to the level of difficulty encountered when attempting to analyze cell wall structure and composition. In the past, lengthy protocols to quantify cell wall monosaccharides contributing to cellulose as well as neutral and acidic cell wall polysaccharides have been used. Recently, a streamlined approach for monosaccharide quantification was described. This protocol combines a simplified hydrolysis method followed by several runs of high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Here, we present an updated version of this protocol in which we can analyze all nine cell wall monosaccharides in a single high-performance liquid chromatography HPAEC-PAD gradient profile. The inclusion of an enzymatic starch degradation, as well as alternate internal standards for added quantification accuracy, and a ready-to-use Python script facilitating data analysis adds a broadened scope of utility to this protocol. This protocol was used to analyze Arabidopsis light-grown seedlings and dark-grown hypocotyls, but is suitable for any plant tissues.

5.
EMBO J ; 38(24): e101822, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31736111

RESUMEN

Environmental adaptation of organisms relies on fast perception and response to external signals, which lead to developmental changes. Plant cell growth is strongly dependent on cell wall remodeling. However, little is known about cell wall-related sensing of biotic stimuli and the downstream mechanisms that coordinate growth and defense responses. We generated genetically encoded pH sensors to determine absolute pH changes across the plasma membrane in response to biotic stress. A rapid apoplastic acidification by phosphorylation-based proton pump activation in response to the fungus Fusarium oxysporum immediately reduced cellulose synthesis and cell growth and, furthermore, had a direct influence on the pathogenicity of the fungus. In addition, pH seems to influence cellulose structure. All these effects were dependent on the COMPANION OF CELLULOSE SYNTHASE proteins that are thus at the nexus of plant growth and defense. Hence, our discoveries show a remarkable connection between plant biomass production, immunity, and pH control, and advance our ability to investigate the plant growth-defense balance.


Asunto(s)
Arabidopsis/inmunología , Mecanismos de Defensa , Concentración de Iones de Hidrógeno , Desarrollo de la Planta/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Pared Celular , Celulosa/metabolismo , Fusariosis , Fusarium/patogenicidad , Glucosiltransferasas , Proteínas Asociadas a Microtúbulos/genética , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Estrés Fisiológico
6.
Curr Opin Plant Biol ; 40: 106-113, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28892802

RESUMEN

The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement.


Asunto(s)
Celulosa/biosíntesis , Fenómenos Fisiológicos de las Plantas , Transducción de Señal , Estrés Fisiológico , Pared Celular/metabolismo , Glucosiltransferasas/metabolismo , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo
7.
Nat Plants ; 3: 17027, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28288096

RESUMEN

Nucleotide-binding domain and leucine-rich repeat domain-containing (NLR) proteins are sentinels of plant immunity that monitor host proteins for perturbations induced by pathogenic effector proteins. Here we show that the Arabidopsis ZAR1 NLR protein requires the ZRK3 kinase to recognize the Pseudomonas syringae type III effector (T3E) HopF2a. These results support the hypothesis that ZAR1 associates with an expanded ZRK protein family to broaden its effector recognition spectrum.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas syringae/fisiología , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/inmunología , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/inmunología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/inmunología
8.
Front Plant Sci ; 6: 995, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617631

RESUMEN

Pseudomonas syringae is a Gram-negative bacterium that infects multiple plant species by manipulating cellular processes via injection of type three secreted effectors (T3SEs) into host cells. Nucleotide-binding leucine-rich repeat (NLR) resistance (R) proteins recognize specific T3SEs and trigger a robust immune response, called effector-triggered immunity (ETI), which limits pathogen proliferation and is often associated with localized programmed cell death, known as the hypersensitive response (HR). In this study, we examine the influence of elevated temperature on two ETI outputs: HR and pathogen virulence suppression. We found that in the Arabidopsis thaliana accession Col-0, elevated temperatures suppress the HR, but have minimal influence on ETI-associated P. syringae virulence suppression, thereby uncoupling these two ETI responses. We also identify accessions of Arabidopsis that exhibit impaired P. syringae virulence suppression at elevated temperature, highlighting the natural variation that exists in coping with biotic and abiotic stresses. These results not only reinforce the influence of abiotic factors on plant immunity but also emphasize the importance of carefully documented environmental conditions in studies of plant immunity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...